• 제목/요약/키워드: Zero-plane displacement

검색결과 27건 처리시간 0.023초

Transient response of rhombic laminates

  • Anish, Anish;Chaubey, Abhay K.;Vishwakarma, Satyam;Kumar, Ajay;Fic, Stanislaw;Barnat-Hunek, Danuta
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.551-562
    • /
    • 2019
  • In the present study, a suitable mathematical model considering parabolic transverse shear strains for dynamic analysis of laminated composite skew plates under different types of impulse and spatial loads was presented for the first time. The proposed mathematical model satisfies zero transverse shear strain at the top and bottom of the plate. On the basis of the cubic variation of thickness coordinate in in-plane displacement fields of the present mathematical model, a 2D finite element (FE) model was developed including skew transformations in the mathematical model. No shear correction factor is required in the present formulation and damping effect was also incorporated. This is the first FE implementation considering a cubic variation of thickness coordinate in in-plane displacement fields including skew transformations to solve the forced vibration problem of composite skew plates. The effect of transverse shear and rotary inertia was incorporated in the present model. The Newmark-${\beta}$ scheme was adapted to perform time integration from step to step. The $C^0$ FE formulation was implemented to overcome the problem of $C^1$ continuity associated with the cubic variation of thickness coordinate in in-plane displacement fields. The numerical studies showed that the present 2D FE model predicts the result close to the analytical results. Many new results varying different parameter such as skew angles, boundary conditions, etc. were presented.

인공광하의 공정육묘용 풍동 설계 및 공정묘 개체군상의 공기역학적 특성 (Design of a Wind Tunnel for Plug Seedlings Production under Artificial Light and Aerodynamic Characteristics above Plug Stand)

  • 김용현;고재풍수
    • Journal of Biosystems Engineering
    • /
    • 제21권4호
    • /
    • pp.429-435
    • /
    • 1996
  • A wind tunnel consisting of two air flow conditioners with polycarbonate pipes, a plant growth room, a suction fan and fan controller, and fluorescent lamps, was designed to investigate the interactions between the growth of plug seedlings under artificial light and their Physical environments. Light transmissivities in the plant growth room based on the photosynthetic photon flux density and photosynthetically active radiation was appeared to be 96.3% and 96.8%, respectively. Measurement showed a uniformity in the vertical profiles of air current speed at the middle and rear regions of plug trays in wind tunnel. This result indicated that the development of a wind tunnel based on the design criteria of the American Society of Mechanical Engineers was adequate. Air current speed inside the plug stand was significantly decreased due to the resistance by the leaves of plug seedlings and boundary layer developed over and below the plug stand. Driving force to facilitate the diffusion of gas inside the plug stand might be regarded as extremely low. Aerodynamic characteristics above the plug stand under artificial light were investigated. As the air current speed increased, zero plane displacement decreased but roughness length and frictional velocity increased. Zero plane displacement linearly increased with the average height of plug seedlings. The wind tunnel developed in this study would be useful to investigate the effects of air current speed on the microclimate over and inside the plug stand and to collect basic data for a large-scale plug production under artificial light in a semi-closed ecosystem.

  • PDF

면외변형하의 이방성 띠판에 대한 동적계면균열 (Dynamic Interfacial Crack in Bonded Anisotropic Strip Under Out-of-Plane Deformation)

  • 박재완;최성렬
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.949-958
    • /
    • 2001
  • A semi-infinite interfacial crack propagated with constant velocity in two bonded anisotropic strips under out-of-plane clamped displacements is analyzed. Using Fourier integral transform the problem is formulated and the Wiener-Hopf equation is derived. By solving this equation the asymptotic stress and displacement fields near the crack tip are obtained, where the results get more general expressions applicable not only to isotropic/orthotropic materials but also to the extent of the anisotropic material having one plane of elastic symmetry for the interfacial crack. The dynamic stress intensity factor is obtained as a closed form, which is decreased as the velocity of crack propagation increases. The critical velocity where the stress intensity factor comes to zero is obtained, which agrees with the lower value between the critical values of parallel crack merged in the material 1 and 2 adjacent to the interface. Using the near tip fields of stresses and displacements, the dynamic energy release rate is also obtained as a form of the stress intensiy factor.

판재의 초음파 비선형 특성평가를 위한 Lamb Wave 기법 (Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates)

  • 이태훈;김정석;장경영
    • 비파괴검사학회지
    • /
    • 제30권5호
    • /
    • pp.458-463
    • /
    • 2010
  • 음향 비선형성은 재료 물성의 미세한 변화에 민감하기 때문에, 이를 측정하는 비선형 초음파 기술은 재료의 열화나 피로를 평가할 수 있는 기법으로 연구되어 왔다. 하지만 벌크파를 이용하는 일반적인 비선형 초음파 기법은 얇은 판재에 적용하는 것에는 여러 한계가 있다. 이와 같은 경우에는 비선형 Lamb 파의 사용을 생각할 수 있지만, Lamb 파는 벌크파와 매우 다른 전파 특성을 가지고 있어 그 비선형 특성에 대한 별도의 연구를 필요로 한다. 이를 위해 본 연구에서는 Lamb 파에서 비선형성에 의해 전파하면서 누적 성장할 수 있는 2차 고조파 모드의 발생 조건을 분석하였으며, 그 결과 네 가지 조건, 즉 (1) phase matching, (2) non-zero power flux, (3) group velocity matching, (4) non-zero out-of-plane displacement 를 제시하였다. 그리고 제시된 조건으로 알루미늄 판재에 대책 실험한 결과 이론 예측과 동일하게 전파 거리에 따라 2차 고조파 성분의 크기와 비선형 파라미터가 증가하였고, Al6061-T6 과 Al1100-H14에서 측정된 상대적인 비선형 파라미터의 비율이 이론적인 비율과 근접함을 보였다.

구조체의 위상학적 최적화를 위한 비선형 프로그래밍 (A Nonlinear Programming Formulation for the Topological Structural Optimization)

  • 박재형;이리형
    • 전산구조공학
    • /
    • 제9권3호
    • /
    • pp.169-177
    • /
    • 1996
  • 구조물에 있어서 위상학적 최적화 문제는 최적화를 구하는 과정에서 구조체가 변화함으로 인한 어려움 때문에 최적화 분야에서 가장 어려운 문제로 간주되어 왔다. 종래의 방법으로는 일반적으로 구조요소 사이즈가 영으로 접근할 때 강성 매트릭스의 singularity를 발생시킴으로써 최적의 해를 얻지 못하고 도중에 계산이 종료되어 버린다. 본 연구에 있어서는 이러한 문제점들을 해결하기 위한 비선형 프로그래밍 formulation을 제안하는 것을 목적으로 한다. 이 formulation의 주된 특성은 요소 사이즈가 영이 되는 것을 허용한다. 평형방정식을 등제약조건으로 간주함으로써 강성 매트릭스의 singularity를 피할 수 있다. 이 formulation을 하중을 받는 구조물에 있어서 응력과 변위의 제약조건하에서 중량을 최소화할때의 유한요소의 두께를 구하는 디자인 문제에 적용하여, 이 formulation이 위상학적 최적화에 있어서의 효과를 입증하였다.

  • PDF

영역 분할법을 이용한 깊은 홈을 가진 임의 형상 오목 멤브레인의 고유치 해석 (Eigenvalue Analysis of Arbitrarily Shaped, Concave Membranes With a Deep Groove Using a Sub-domain Method)

  • 강상욱;윤주일
    • 한국소음진동공학회논문집
    • /
    • 제19권10호
    • /
    • pp.1069-1074
    • /
    • 2009
  • A sub-domain method for free vibration analysis of arbitrarily shaped, concave membranes with a deep groove is proposed in the paper. The proposed method divides the concave membrane of interest into two convex regions. The vibration displacement(approximate solution) of each convex region is assumed by linearly superposing plane waves generated at edges of the region. A sub-system matrix for each convex region is extracted by applying a provisional boundary condition to the approximate solution. Finally, a system matrix, which of the determinant gives eigenvalues of the concave membrane, is made by considering the fixed boundary condition(displacement zero condition) at edges and the compatibility condition(the condition of continuity in displacement and slope) at the interface between the two regions. Case studies show that the proposed method is valid and accurate when the eigenvalues by the proposed are compared to those by NDIF method, FEM, or the exact method.

유사 평면변형률 유한요소를 사용한 실린더 문제의 해석 (Finite Element Analyses of Cylinder Problems Using Pseudo-General Plane Strain Elements(Planar Constraint))

  • 권영두;권현욱;신상목;이찬복
    • 한국해양공학회지
    • /
    • 제17권5호
    • /
    • pp.66-75
    • /
    • 2003
  • Long cylinder, subjected to internal pressure, is important in the analysis and design of nuclear fuel rod structures. In many cases, long cylinder problems have been considered as a plane strain condition. However, strictly speaking, long cylinder problems are not plane strain problems, but rather a general plane strain (GPS) condition, which is a combination of a plane strain state and a uniform strain state. The magnitude of the uniform axial strain is required, in order to make the summation of the axial force zero. Although there has been the GPS element, this paper proposes a general technique to solve long cylinder problems, using several pseudo-general plane strain (PGPS) elements. The conventional GPS elements and PGPS elements employed are as follows: axisymmetric GPS element (GA3), axisymmetric PGPS element (PGA8/6), 2-D GPS element (GIO), 3-D PGPS element (PG20/16), and reduced PGPS elements (RPGA6, RPG20/16). In particular, PGPS elements (PGA8/6, PG20/16) can be applied in periodic structure problems. These finite elements are tested, using several kinds of examples, thereby confirming the validity of the proposed finite element models.

Bending analysis of doubly curved FGM sandwich rhombic conoids

  • Ansari, Md I.;Kumar, Ajay;Bandyopadhyaya, Ranja
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.469-483
    • /
    • 2019
  • In this paper, an improved mathematical model is presented for the bending analysis of doubly curved functionally graded material (FGM) sandwich rhombic conoids. The mathematical model includes expansion of Taylor's series up to the third degree in thickness coordinate and normal curvatures in in-plane displacement fields. The condition of zero-transverse shear strain at upper and lower surface of rhombic conoids is implemented in the present model. The newly introduced feature in the present mathematical model is the simultaneous inclusion of normal curvatures in deformation field and twist curvature in strain-displacement equations. This unique introduction permits the new 2D mathematical model to solve problems of moderately thick and deep doubly curved FGM sandwich rhombic conoids. The distinguishing feature of present shell from the other shells is that maximum transverse deflection does not occur at its center. The proposed new mathematical model is implemented in finite element code written in FORTRAN. The obtained numerical results are compared with the results available in the literature. Once validated, the current model was employed to solve numerous bending problems by varying different parameters like volume fraction indices, skew angles, boundary conditions, thickness scheme, and several geometric parameters.

Dynamic Analysis of Laminated Composite and Sandwich Plates Using Trigonometric Layer-wise Higher Order Shear Deformation Theory

  • Suganyadevi, S;Singh, B.N.
    • International Journal of Aerospace System Engineering
    • /
    • 제3권1호
    • /
    • pp.10-16
    • /
    • 2016
  • A trigonometric Layerwise higher order shear deformation theory (TLHSDT) is developed and implemented for free vibration and buckling analysis of laminated composite and sandwich plates by analytical and finite element formulation. The present model assumes parabolic variation of out-plane stresses through the depth of the plate and also accomplish the zero transverse shear stresses over the surface of the plate. Thus a need of shear correction factor is obviated. The present zigzag model able to meet the transverse shear stress continuity and zigzag form of in-plane displacement continuity at the plate interfaces. Hence, botheration of shear correction coefficient is neglected. In the case of analytical method, the governing differential equation and boundary conditions are obtained from the principle of virtual work. For the finite element formulation, an efficient eight noded $C^0$ continuous isoparametric serendipity element is established and employed to examine the dynamic analysis. Like FSDT, the considered mathematical model possesses similar number of variables and which decides the present models computationally more effective. Several numerical predictions are carried out and results are compared with those of other existing numerical approaches.

등변분포 평면응력을 받는 SS-C-SS-C 직사각형 판의 진동과 좌굴의 엄밀해 (Exact Solutions for Vibration and Buckling of An SS-C-SS-C Rectangular Plate Loaded by Linearly Varying In-plane Stresse)

  • 강재훈;심현주;장경호
    • 한국소음진동공학회논문집
    • /
    • 제14권1호
    • /
    • pp.56-63
    • /
    • 2004
  • Exact solutions are presented for the free vibration and buckling of rectangular plates haying two opposite edges ( x=0 and a) simply supported and the other two ( y=0 and b) clamped, with the simply supported edges subjected to a linearly varying normal stress $\sigma$$_{x}$=- $N_{0}$[1-a(y/b)]/h, where h is the plate thickness. By assuming the transverse displacement ( w) to vary as sin(m$\pi$x/a), the governing partial differential equation of motion is reduced to an ordinary differential equation in y with variable coefficients. for which an exact solution is obtained as a power series (the method of Frobenius). Applying the clamped boundary conditions at y=0 and byields the frequency determinant. Buckling loads arise as the frequencies approach zero. A careful study of the convergence of the power series is made. Buckling loads are determined for loading parameters a= 0, 0.5, 1, 1.5. 2, for which a=2 is a pure in-plane bending moment. Comparisons are made with published buckling loads for a= 0, 1, 2 obtained by the method of integration of the differential equation (a=0) or the method of energy (a=1, 2). Novel results are presented for the free vibration frequencies of rectangular plates with aspect ratios a/b =0.5, 1, 2 when a=2, with load intensities $N_{0}$ / $N_{cr}$ =0, 0.5, 0.8, 0.95, 1. where $N_{cr}$ is the critical buckling load of the plate. Contour plots of buckling and free vibration mode shapes ate also shown.shown.