• Title/Summary/Keyword: Zero-Dimensional Model

Search Result 119, Processing Time 0.021 seconds

Hydraulic Characteristics of Surface Irrigation in Paddy Field of Direct Seeding Culture -With paddy field of ridge direct dry seeding- (직파재배 논의 지표관개 수리특성 -건답휴립직파 논을 중심으로-)

  • 정하우;최진용;김대식;박기욱;배승종
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.64-74
    • /
    • 1997
  • The purpose of this study is to analyze hydraulic characteristics of surface irrigation in a paddy field of direct seeding culture. Field experiment was performed in the paddy field of ridge direct dry seeding. Simulation by a numerical model was also accomplished with the data obtained from the field experiment. The model was developed by one dimensional zero-inertia equation and finite difference method. From the result of the field observation, the furrows of the experimental field were found to have various geometric characteristics. Advance distance and time were measured both in the field and by the model simulation for various furrow lengths and irrigation discharges. Roughness coefficients of each furrow were also estimated by the model.

  • PDF

Analysis of Stratified Lake using an Eddy Diffusion and a Mixed-layer Models

  • Kim, Kyung-sub
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.111-123
    • /
    • 1997
  • A one-dimensional eddy diffusion model and a mixed-layer model are developed and applied to simulate the vertical temperature profiles in lakes. Also the running result of each method are compared and analyzed. In an eddy diffusion model, molecular diffusivity is neglected and eddy diffusivity which does not need lake-specific fitting parameter and constant lake's level are applied. The heat exchanges at the water surface and the bottom are formulated by the energy balance and zero energy gradient, respectively. In a mixed-layer model, two layers approach which has a constant thickness is adopted. The application of these models which use explicit finite difference and Runge-Kutta methods respectively demonstrates that the models simulate water temperatures efficiently.

  • PDF

Optimization of construction support scheme for foundation pits at zero distance to both sides of existing stations based on the pit corner effect

  • Tonghua Ling;Xing Wu;Fu Huang;Jian Xiao;Yiwei Sun;Wei Feng
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.381-395
    • /
    • 2024
  • With the wide application of urban subway tunnels, the foundation pits of new stations and existing subway tunnels are becoming increasingly close, and even zero-distance close-fitting construction has taken place. To optimize the construction support scheme, the existing tunnel's vertical displacement is theoretically analyzed using the two-stage analysis method to understand the action mechanism of the construction of zero-distance deep large foundation pits on both sides of the existing stations; a three-dimensional numerical calculation is also performed for further analysis. First, the additional stress field on the existing tunnel caused by the unloading of zero-distance foundation pits on both sides of the tunnel is derived based on the Mindlin stress solution of a semi-infinite elastic body under internal load. Then, considering the existing subway tunnel's joints, shear stiffness, and shear soil deformation effect, the tunnel is regarded as a Timoshenko beam placed on the Kerr foundation; a sixth-order differential control equation of the tunnel under the action of additional stress is subsequently established for solving the vertical displacement of the tunnel. These theoretical calculation results are then compared with the numerical simulation results and monitoring data. Finally, an optimized foundation pit support scheme is obtained considering the pit corner effect and external corner failure mode. The research shows a high consistency between the monitoring data,analytical and numerical solution, and the closer the tunnel is to the foundation pit, the more uplift deformation will occur. The internal corner of the foundation pit can restrain the deformation of the tunnel and the retaining structure, while the external corner can cause local stress concentration on the diaphragm wall. The proposed optimization scheme can effectively reduce construction costs while meeting the safety requirements of foundation pit support structures.

Enthalpy transport in pulse tube refrigerators (맥동관냉동기의 앤탈피이동)

  • 강영구;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.180-192
    • /
    • 1998
  • Enthalpy transport in a pulse tube was investigated by two-dimensional analysis of mass, momentum and energy equations assuming that the axial temperature gradient in the pulse tube is constant. Time-averaged second-order conservation equations of mass, momentum and energy were used to show the existence of steady mass streaming and enthalpy streaming. Effects of axial temperature gradient, velocity amplitude ratio and heat transfer between the gas and the wall on the steady mass streaming and enthalpy streaming were shown. Enthalpy loss due to the steady mass streaming is zero for basic and orifice pulse tube refrigerators, but it is proportional to the axial temperature gradient and steady mass flow rate through a pulse tube for double inlet pulse tube refrigerators.

  • PDF

Development of a Micro-Computer based Program for the Three Dimensional Packing Problem (3차원 물품 적재에 관한 마이크로 컴퓨터용 프로그램 개발)

  • Hwang, Hark;Lee, Kwan-Jae;Sun, Ji-Ung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.1
    • /
    • pp.55-76
    • /
    • 1997
  • This paper presents a heuristic solution for the three dimensional container loading problem with boxes which are different in size. The container loading problem is formulated as a zero-one mixed integer programming model whose objective is to maximize the container utilization. Due to its problem complexity, we propose a heuristic based on layered loading technique. Also, presented is a way to achieve the weighting balance of the stacked boxes. A micro-computer based program is developed which generates container loading pattern provided by the proposed heuristic. The results are displayed by computer-graphic. To evaluate the performance of the proposed heuristic, computational experiments are performed. The results indicate that in most of the cases the proposed heuristic performs better than an existing heuristic in terms of the container utilization.

  • PDF

Performance Analysis Modeling for Design of Rotary Kiln Reactors (로터리킬른 반응기 설계를 위한 성능해석 모형)

  • Eeom, Minjae;Hahn, Taekjin;Lee, Hookyung;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.9-23
    • /
    • 2013
  • A rotary kiln furnace is one of the most widely used gas-solid reactors in the industrial field. Although the rotary kiln is a versatile system and has different size, approach to the reactor modeling can be generalized in terms of flow motion of the solid and gas phases, heat transfer, and chemical reactions on purpose. In this paper, starting from a zero-dimensional model and extending to higher dimension and comprehensive models, overall procedure of the design development of rotary kiln reactors and considerations are presented. The approaches to performance analysis of the reactors are introduced and examples of application cases are presented.

The prediction of performance and emissions of a spark ignition engine by cycle simulation (Cycle Simulation에 의한 가솔린기관의 성능과 배출물 예측)

  • 이종원;정진은
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.48-55
    • /
    • 1983
  • The prediction of performance and emissions is presented for a spark ignition engine. a two zone, zero-dimensional model was employed which included thermodynamics, combustion and hear transfer, and a kinetic model employed for NOx. The model was used to analyze the processes of compression, combustion and expansion. Cylinder pressures and temperatures were calculated as a function of crankangle as well as engine performance and emissions. Predictions made with the simulation were compared with experimental data from a four cylinder spark ignition engine. Calculated pressures and, Co and Co$_{2}$ concentrations showed acceptable quantitative agreement with data. But calculated No concentrations were slightly different. A parametric study of the effect of variations in speed, combustion duration and spark timing was carried out. This simulation can be useful for design of spark ignition engines.

  • PDF

Calculation of Fuel Spray Impingement and Fuel Film Formation in an HSDI Diesel Engine

  • Kyoungdoug Min;Kim, Manshik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.376-385
    • /
    • 2002
  • Spray impingement and fuel film formation models with cavitation have been developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process was modeled by considering the effects of surface temperature conditions and fuel film formation. The behavior of fuel droplets after impingement was divided into rebound, spread and splash using the Weber number and parameter K(equation omitted). The spray impingement model accounts for mass conservation, energy conservation, and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, momentum, and energy equations along the direction of fuel film thickness. Zero dimensional cavitation model was adopted in order to consider the cavitation phenomena and to give reasonable initial conditions for spray injection. Numerical simulations of spray tip penetration, spray impingement patterns, and the mass of film-state fuel matched well with the experimental data. The spray impingement and fuel film formation models have been applied to study spray/wall impingement in high-speed direct injection diesel engines.

The Effect of the Collision Process Between Molecules on the Rates of Thermal Relaxation of the Translational-Rotational-Vibrational Energy Exchange (분자간 충돌과정에 따른 병진-회전-진동에너지의 이완율)

  • Heo, Joong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1494-1500
    • /
    • 2004
  • A zero-dimensional direct simulation Monte Carlo(DSMC) model is developed for simulating diatomic gas including vibrational kinetics. The method is applied to the simulation of two systems: vibrational relaxation of a simple harmonic oscillator and translational-rotational-vibrational energy exchange process under heating and cooling. In the present DSMC method, the variable hard sphere molecular model and no time counter technique are used to simulate the molecular collision kinetics. For simulation of diatomic gas flows, the Borgnakke-Larsen phenomenological model is adopted to redistribute the translational and internal energies.

A Study of Hierarchical Models for the Optimal Analysis of Thin Elastic Structures (박판 탄성구조물의 최적해석을 위한 계층적 모델에 관한 연구)

  • Jo, Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.933-941
    • /
    • 1997
  • In the analysis of thin elastic structures such as plate and shell-like structures, classical lower-order theories like Kirchhoff and Reissner-Mindin theories are insufficient to describe the behavior of such structures in the region where the state of stresses is complex. On the other hand, the fully three dimensional theory of linear elasticity can provide desired analysis accuracy, but requires expensive computational implementation compared to the classical theories. This paper is concerned with the development of hierarchical models for elastic structures which can be used for hierarchical modeling for the analysis of such structures. Derivation and limit model analysis (when the thickness of structures tends to zero) of hierarchical models are presented together with a introduction of modeling error estimation. Also, numerical results supporting theoretical results are given.