• Title/Summary/Keyword: Zero-Current-Transition (ZCT)

Search Result 26, Processing Time 0.022 seconds

Three level ZCT IGBT inverter for High Power Applications (대전력 응용을 위한 고효율 3레벨 ZCT IGBT 인버터)

  • Lee, Seong-Yong;Lee, Dong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.1
    • /
    • pp.34-41
    • /
    • 1999
  • A three-level ZCT(Zero Current Transition) IGBT inverter is presented for high power IGBT inverters. The concept of ZCT for the conventional boost converter is extended to the three-level inverter. Moreover, in order to improve the reliability of inverter, midpoint charge balance problem of the three-level inverter is analyzed with respect 150kw, 20kHz prototype are presented to verify the principle of ZCT Operation.

  • PDF

A Zero-Current-Transition Synchronous Buck Converter Using Auxiliary Circuit with Soft-Switching (소프트 스위칭 방식의 보조 회로를 활용한 영전류 천이형 싱크로너스 벅 컨버터)

  • Lee, Eui-Cheon;Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.359-366
    • /
    • 2013
  • This paper proposes a zero-current-transition(ZCT) synchronous buck converter using auxiliary circuit with soft-switching for light weight and high efficiency. In this scheme, an auxiliary circuit is added to the conventional synchronous rectifier buck converter and used to achieve soft-switching condition for both the main switch and synchronous switch. In addition, the switch in the auxiliary circuit operates under soft-switching conditions. Thus, the proposed converter provides a higher efficiency. The basic operations, in this paper, are discussed and design guidelines are presented. The usefulness of the proposed converter is verified on a 200KHz, 20 W prototype converter.

A Fully Soft Switched Two Quadrant Bidirectional Soft Switching Converter for Ultra Capacitor Interface Circuits

  • Mirzaei, Amin;Farzanehfard, Hosein;Adib, Ehsan;Jusoh, Awang;Salam, Zainal
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • This paper describes a two quadrant bidirectional soft switching converter for ultra capacitor interface circuits. The total efficiency of the energy storage system in terms of size and cost can be increased by a combination of batteries and ultra capacitors. The required system energy is provided by a battery, while an ultra capacitor is used at high load power pulses. The ultra capacitor voltage changes during charge and discharge modes, therefore an interface circuit is required between the ultra capacitor and the battery. This interface circuit must have good efficiency while providing bidirectional power conversion to capture energy from regenerative braking, downhill driving and the protecting ultra capacitor from immediate discharge. In this paper a fully soft switched two quadrant bidirectional soft switching converter for ultra capacitor interface circuits is introduced and the elements of the converter are reduced considerably. In this paper, zero voltage transient (ZVT) and zero current transient (ZCT) techniques are applied to increase efficiency. The proposed converter acts as a ZCT Buck to charge the ultra capacitor. On the other hand, it acts as a ZVT Boost to discharge the ultra capacitor. A laboratory prototype converter is designed and realized for hybrid vehicle applications. The experimental results presented confirm the theoretical and simulation results.

A Novel Soft Switching PWM·PFC AC·DC Boost Converter

  • Sahin, Yakup
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.256-262
    • /
    • 2018
  • This study introduces a novel Soft Switching (SS) Pulse Width Modulated (PWM) AC-DC boost converter. In the proposed converter, the main switch is turned on with Zero Voltage Transition (ZVT) and turned off with Zero Current Transition (ZCT). The main diode is turned on with Zero Voltage Switching (ZVS) and turned off with Zero Current Switching (ZCS). The auxiliary switch is turned on and off with ZCS. All auxiliary semiconductor devices are turned on and off with SS. There is no extra current or voltage stress on the main semiconductor devices. The majority of switching energies are transferred to the output by auxiliary transformer. Thus, the current stress of auxiliary switch is significantly reduced. Besides, the proposed converter has simple structure and ease of control due to common ground. The theoretical analysis of the proposed converter is verified by a prototype with 100 kHz switching frequency and 500 W output power. Furthermore, the efficiency of the proposed converter is 98.9% at nominal output power.

A Zero-Current-Zero-Voltage-Transition Boost-Flyback Converter Using Auxiliary Circuit (보조 회로를 활용한 ZCZVT 소프트 스위칭 부스트-플라이백 컨버터)

  • Ju, Hyeon-Seung;Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.372-378
    • /
    • 2019
  • This study proposes a new zero-current-zero-voltage-transition (ZCZVT) boost-flyback converter using a soft switching auxiliary circuit. The proposed converter integrates the boost and flyback converters to increase the voltage with a low duty ratio. The main and auxiliary switches turn the ZCZVT conditions on and off. Thus, the proposed converter has high efficiency. The voltage gain at the steady state is derived, and the inductor volt-second balance and the design guidelines are presented. Finally, the performance of the proposed converter is validated by experimental results from a 200 W, 30 V DC input, 400 V DC output, and 200 kHz boost-flyback converter prototype.

Switching Losses Analysis of the Interleaved ZCT DC-DC Converter with Current Conduction Modes (전류전도모드에 따른 Interleaved ZCT DC-DC Converter의 스위칭 손실 분석)

  • Cha, Dae-Joong;Baek, Ji-Eun;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.80-85
    • /
    • 2015
  • In the issues of interleaved topology which have been in limelight as high power converter, various soft-switching methods are studied to reduce switching losses in high power application. The interleaved ZCT converter has an additional filter inductor to reduce losses of diodes during reverse recovery process. However, additional current conduction modes are occurred by the inductor, we need to analyze switching losses with inductor values on each mode. In this paper, current conduction modes and boundary conditions of interleaved ZCT converter are analyzed. In the conclusion, the minimum of switching losses in converter operation modes is analyzed by calculating switching losses.

An Interleaved PWM Buck Converter with a Soft Switching Auxiliary Circuit (소프트 스위칭 형태의 보조 회로를 이용한 인터리브드 벅 컨버터)

  • Lee, Eui-Cheon;Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.547-555
    • /
    • 2013
  • This paper proposes the interleaved buck converter using a soft switching auxiliary circuit. In this scheme, an auxiliary circuit is added to the conventional interleaved buck converter and used to achieve soft-switching conditions for both the main switch and freewheeling diode. In addition, the switch in the auxiliary circuit operates under soft-switching conditions. Also, according to the input to output conditions, the main switch achieved zero-current-transition(ZCT) or zero-current & zero-voltage-transition(ZCZVT) at turn on. Thus, the proposed interleaved buck converter provides a higher efficiency. The basic operations, in this paper, are discussed and design guidelines are presented. The usefulness of the proposed converter is verified on a 200kHz, 180W prototype converter.

A New Zero-Current-Transition Buck Converter (새로운 영전류 천이형 벅 컨버터)

  • 최현칠
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.556-563
    • /
    • 2001
  • In this paper a new zero current transition pulse width modulation (ZCT-PWM) buck converter is proposed to combine the desirable feature of both the conventional buck converter and resonant converters. In this proposed scheme an auxiliary circuit is added to the conventional buck converter and used to achieve soft-switching for both the main switch and the freewheeling diode while not incurring any additional losses due to auxiliary circuit And this converter operates exactly like the conventional PWM converter except for a short particular time interval. The operation of the proposed converter is explained and analyzed. and design guidelines are presented. To validate the feasibility of the proposed converter, a 100KHz 180-W prototype is built and tested.

  • PDF

A New Soft-switched PWM Boost Converter with a Lossless Auxiliary Circuit (스위칭 손실 없는 보조회로를 이용한 고효율 부우스트 컨버터 설계)

  • Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.149-158
    • /
    • 2006
  • A soft-switching scheme for the PWM boost converter, ZCT (Zero current transition : ZCT) boost converter Is newly proposed to obtain the desirable features of both the conventional BWM boost and resonant converters such as easy of control, reduced switching losses and stresses, an4 low EMI. In order to achieve the soft-switching action, the proposed scheme employs an auxiliary circuit, which is added to the conventional boost converter and used to achieve soft-switching for both the main switch and the output diode while not incurring any additional losses due to auxiliary circuit itself. The basic operations, in this paper, we discussed and design guidelines are presented. Through a 100kHz, 60-W prototype, the usefulness of the proposed scheme is verified.

A Zero-Current-Zero-Voltage-Transition Flyback Converter using Auxiliary Circuit (보조 회로를 활용한 ZCZVT 소프트 스위칭 플라이백 컨버터)

  • Ju, Hyeon-Seung;Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.397-402
    • /
    • 2018
  • In this study, a high-efficiency flyback converter that uses a soft-switching auxiliary circuit is proposed. The structure of the proposed converter adds an inductor, switch, diode, and capacitor to the conventional flyback converter. The switch in the auxiliary circuit and the main switch are turned on and off under soft-switching conditions. Therefore, the switching losses of the proposed flyback converter are considerably smaller than those of conventional flyback converters. The performance of the proposed flyback converter is validated by experiments on a 100 W single-output flyback converter prototype, and design guidelines are presented.