• Title/Summary/Keyword: Zero speed

Search Result 549, Processing Time 0.025 seconds

A Design of Heart Rate Feedback Controller for the Regimen of Physical Activity of the Patient with Coronary Artery Disease (관상동맥질환자의 운동요법을 위한 심장 박동궤환조절기의 설계)

  • 김진일;박종국
    • Journal of Biomedical Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 1982
  • The regimen of physical activity of the patient with coronary artery disease requires that he should not overshoot the prescribed heart rate based on his age, health and fuctional status of the heart during his exercise. The step input of work load, however, involves a great danger of overshooting. The purpose of this study was to desigil a system that makes it passible for a subject to check the overshooting. This system shows on tile H.R-meter, the amplified and filtered heart-rate signal of the subject received by the photosensor on his earlobe, puts it in the lead coinpensational circuit where it is conpared with the reference input signal(=the presfribed heart rate). The output of the lead compensational circuit works the aull meter. By means of this null meter, the subject knows whether he is overshooting the prescribed heart rate or not. He can continue the natl meter needle at the'Zero'position through the control of the speed of pedaling of the bicycle ergometer, An experimental test, made on eight men and four women in healthy condition, showed that 91. 7% of them vlaintained the stable heart rate and that the overshooting of the desired heart rate did not exceed $\pm$2BPM. According to the result of this experiment, since the heart rate feedback controller makes it possible for the subject to take the prescribed exercise based not on the work load but on the heart rate which incidentally is inexpensive, it can be made use of as the instrument for the regimen of pflysical activity by the patient with coronary artery disease.

  • PDF

Influence of viscous effects on numerical prediction of motions of SWATH vessels in waves

  • Brizzolara, Stefano;Bonfiglio, Luca;Medeiros, Joao Seixas De
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.219-236
    • /
    • 2013
  • The accurate prediction of motion in waves of a marine vehicle is essential to assess the maximum sea state vs. operational requirements. This is particularly true for small crafts, such as Autonomous Surface Vessels (ASV). Two different numerical methods to predict motions of a SWATH-ASV are considered: an inviscid strip theory initially developed at MIT for catamarans and then adapted for SWATHs and new a hybrid strip theory, based on the numerical solution of the radiation forces by an unsteady viscous, non-linear free surface flow solver. Motion predictions obtained by the viscous flow method are critically discussed against those obtained by potential flow strip theory. Effects of viscosity are analyzed by comparison of sectional added mass and damping calculated at different frequencies and for different sections, RAOs and motions response in irregular waves at zero speed. Some relevant conclusions can be drawn from this study: influence of viscosity is definitely non negligible for SWATH vessels like the one presented: amplitude of the pitch and heave motions predicted at the resonance frequency differ of 20% respectively and 50%; in this respect, the hybrid method with fully non-linear, viscous free surface calculation of the radiation forces turns out to be a very valuable tool to improve the accuracy of traditional strip theories, without the burden of long computational times requested by fully viscous time domain three dimensional simulations.

An Adaptive Garbage Collection Policy for NAND Flash Memory (낸드 플래시 메모리를 위한 적응형 가비지 컬렉션 정책)

  • Han, Gyu-Tae;Kim, Sung-Jo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.5
    • /
    • pp.322-330
    • /
    • 2009
  • In order to utilize NAND flash memory as storage media which does not allow update-in-place and limits the number of block erase count, various garbage collection policies supporting wear-leveling have been investigated. Conventional garbage collection policies require cleaning-index calculation for the entire blocks to choose a block to be garbage-collected to support wear-leveling whenever a garbage collection is required, which results in performance degradation of system. This paper proposes a garbage collection policy which supports wear-leveling using a threshold value, which is in fact a variance of erase counts and by the maximum erase count of all blocks, without calculating the cleaning-index. During garbage collection, the erase cost is minimized by using the Greedy Policy if the variance is less than the threshold value. It achieves wear-leveling by excluding the block with the largest erase count from erase target blocks if the variance is larger than threshold value. The proposed scheme shows that a standard deviation approaches to zero as the erase count of blocks approaches to its upper limit and the measured speed of garbage collection is two times faster than the conventional schemes.

A Built-in Redundancy Analysis for Multiple Memory Blocks with Global Spare Architecture (최적 수리효율을 갖는 다중 블록 광역대체 수리구조 메모리를 위한 자체 내장 수리연산회로)

  • Jeong, Woo-Sik;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.11
    • /
    • pp.30-36
    • /
    • 2010
  • In recent memories, repair is an unavoidable method to maintain its yield and quality. Although many word oriented memories as well as embedded memories in system-on-chip (SOC) consists of multiple local memory blocks with a global spare architecture, most of previous studies on built-in redundancy analysis (BIRA) algorithms have focused on single memory block with a local spare architecture. In this paper, a new BIRA algorithm for multiple blocks with a global spare architecture is proposed. The proposed BIRA is basd on CRESTA which is able to achieve optimal repair rate with almost zero analysis time. In the proposed BIRA, all repair solutions for local memory blocks are analyzed by local analyzers which belong to each local memory block and then compared sequentially and judged whether each solution can meet the limitation of the global spare architecture or not. Experimental results show that the proposed BIRA achieves much faster analysis speed compared to previous BIRAs with an optimal repair rate.

A Study on the Dispersion of Hydrogen Gas in Atmosphere (대기 중 수소가스의 확산거동에 관한 연구)

  • Ahn Bum Jong;Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.9-15
    • /
    • 2005
  • Hydrogen is considered to be the most important future energy carrier in many applications reducing significantly greenhouse gas emissions, but the safety issues associated with hydrogen applications need to be investigated and fully understood to be applicable as the carrier. Therefore, there is a considerable demand for further research concerning the dispersion of hydrogen/air mixture clouds and the possible consequences of their ignition. In this study, the dispersion of hydrogen gas in atmosphere has been analysed with atmospheric condition by concerning the buoyancy of hydrogen. The hazard ranges to wind direction increase with wind speed and the stability of atmosphere. The concentration of hydrogen at just above ground is nearly zero due to buoyancy of hydrogen gas. Therefore, the ignition probability of hydrogen gas cloud is low and the hazard of explosion or fire associated with hydrogen gas is relatively low comparing with the other fuel gas such as propane or butane.

  • PDF

A study on how to discriminate the polarities of stator windings for 3 phase induction motors by using induced voltages based on residual magnetism (잔류자기 유도 기전력을 이용한 3상유도전동기 권선의 극성 판별법에 관한 연구)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1146-1149
    • /
    • 2014
  • To discriminate polarities of stator windings for 3 phase induction motors terminal tags of which are not readable, it is possible to utilize the residual magnetic flux present at their rotors as well as to use the way based on external exciting current. The induced voltages are basically decided by parameters such as the quantity of residual flux, the rotator speed by hand force and the phase properties between stator windings. To adopt induced voltages by residual flux for polarity discrimination at sites, the measured voltages by multi-testers need to be readable in magnitude enough to discriminate winding condition with reasonable phase characteristics. This study focuses on the analysis of various connection cases in the expectation that the summing voltages induced by residual flux shall show zero in case of normal connections while the sum becomes greater indication if the connection is in wrong condition. The proposed method is applied to actual motors to disclose how effective it is for polarity discrimination at sites through comparison of output signals between normal and fault connections.

A Performance Evaluation of Constellation Matching-MMA Adaptive Equalization Algorithm in QAM System (QAM 시스템에서 Constellation Matching-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.105-110
    • /
    • 2015
  • This paper relates with the eualization performance of Constellation Matching-MMA (CM-MMA) in order to the consists of optimum receiver for the minimization of intersymbol interference and additive noise effects that is occurs in the nonlinear communication channel. The error signal were obtained that combines the Constellation Matching technique that inserts the zero point between the signal point of equalizer for improving the residual isi and convergence speed compared to the currently used MMA algorithm. In the initial state of adaptive equalization, it depends on the MMA characteristics mainly. And in the steady state, it depends on the CM characteristics mainly. In order to analyzing the equalization performance, the output signal constellation, residual isi, maximum distortion, MSE and SER were applied, then it were compared with the present MMA algorithm. As a result of computer simulation, the CM-MMA has more better performance in the every performance index, and it was also confirmed that the constellation matching effect can be obtained in the greater than 20dB signal to noise ratio.

Investigation of Cutting Characteristics in the Sharp Edge for the Case of Cutting of a Low Carbon Steel Sheet using High-power CW Nd:YAG Laser (고출력 CW Nd:YAG 레이저를 이용한 저탄소 냉연강판 절단시 모서리부 절단 특성 분석)

  • Ahn, Dong-Gyu;Yoo, Young-Tae
    • Journal of Welding and Joining
    • /
    • v.24 no.4
    • /
    • pp.32-38
    • /
    • 2006
  • The objective of present research works is to investigate the effects of process parameters, including the power of laser, cutting speed, material thickness, and the edge angle, on the melted area in the sharp edge of the cut material fur the case of cutting of a low carbon steel sheet using high-power CW Nd:YAG laser. In order to investigate the influence of edge angle and size of loop on the melted area in the sharp edge, angular cutting tests and loop cutting tests have been carried out. From the results of angular cutting tests, the relationship between the edge angle and the melted area has been obtained. The results of the experiments have been shown that the melted area is rapidly reduced from $120^{\circ}$ of the edge angle and the melted area is nearly zero at $150^{\circ}$ of the edge angle. Through the results of loop cutting experiments, the relationship between the cutting angle on the melted area in the edge according to the size of loop have been obtained. In addition, it has been shown that a proper size of loop is nearly 3 mm as the corner angle is greater than $90^{\circ}$ and 5 mm as the comer angle is less than $90^{\circ}$. The results of above experiments will be reflected on the knowledge base to generate optimal cutting path of the laser.

Application of High Resolution Land Use Data on the Possibility to Mitigate Urban Thermal Environment (고해상도 지표자료를 이용한 도시 열환경 완화효과 가능성에 관한 연구)

  • Lee, Kwi-Ok;Lee, Hyun-Ju;Lee, Hwa-Woon
    • Journal of Environmental Science International
    • /
    • v.18 no.4
    • /
    • pp.423-434
    • /
    • 2009
  • In recent years, the urban thermal environment has become worse, such as days on which the temperature goes above $30^{\circ}C$, sultry nights and heat stroke increase, due to the changes in terrestrial cover such as concrete and asphalt and increased anthropogenic heat emission accompanied by artificial structure. The land use type is an important determinant to near-surface air temperature. Due to these reasons we need to understand and improve the urban thermal environment. In this study, the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model(MMS) was applied to the metropolitan of Daegu area in order to investigate the influence of land cover changes and urban modifications increase of Albedo to the surface energy budget on the simulated near-surface air temperature and wind speed. The single urban category in existing 24-category U.S. Geological survey land cover classification used in MM5 was divided into 6 classes to account for heterogeneity of urban land cover. As a result of the numerical simulation intended for the metropolitan of Daegu assumed the increase of Albedo of roofs, buildings, or roads, the increase of Albedo (Cool scenario)can make decrease radiation effect of surface, so that it caused drops in ambient air temperature from 0.2 to 0.3 on the average during the daylight hours and smaller (or near-zero) decrease during the night. The Sensible heat flux and Wind velocity is decreased. Modeling studies suggest that increased surface albedo in urban area can reduce surface and air temperatures near the ground and affect related meteorological parameters such as winds, surface air temperature and sensible heat flux.

A NUMERICAL STUDY ON THE EFFECT OF VEHICLE-TO-VEHICLE DISTANCE ON THE AERODYNAMIC CHARACTERISTICS OF A MOVING VEHICLE (차간 거리가 주행차량의 공력특성에 미치는 영향에 관한 수치해석 연구)

  • Kim, D.G.;Kim, C.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.66-71
    • /
    • 2014
  • Aerodynamic design of a vehicle has very important meaning on the fuel economy, dynamic stability and the noise & vibration of a moving vehicle. In this study, the correlation of aerodynamic effect between two model vehicles moving inline on a road was studied with the basic SAE model vehicle. Drag and lift are two main physical forces acting on the vehicle and both of them directly effect on the fuel economy and driving stability of the vehicle. For the research, the distance between two vehicles is varied from 5m to 30m at the fixed vehicle speed, 100km/h and the side-wind was assumed to be zero. The main issue for this numerical research is on the understanding of the interaction forces; lift and drag between two vehicles formed inline. From the study, it was found that as the distance between two vehicles is closer, the drag force acting on both the front and rear vehicle decreases and the lift force has same trend for both vehicle. As the distance(D) is 5m, the drag of the front vehicle reduced 7.4% but 28.5% for the rear-side vehicle. As the distance is 30m, the drag of the rear vehicle is still reduced to 22% compared to the single driving.