• Title/Summary/Keyword: Zero motion

Search Result 307, Processing Time 0.026 seconds

Cancellation of MRI Motion Artifact in Image Plane (촬상단면내의 MRI 체동 아티팩트의 제거)

  • Kim, Eung-Kyeu
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.4
    • /
    • pp.432-440
    • /
    • 2000
  • In this study, a new algorithm for canceling MRI artifact due to translational motion in image plane is described. Unlike the conventional iterative phase retrieval algorithm, in which there is no guarantee for the convergence, a direct method for estimating the motion is presented. In previous approaches, the motions in the x(read out) direction and the y(phase encoding) direction are estimated simultaneously. However, the features of x and y directional motions are different from each other. By analyzing their features, each x and y directional motion is canceled by different algorithms in two steps. First, it is noticed that the x directional motion corresponds to a shift of the x directional spectrum of the MRI signal, and the non-zero area of the spectrum just corresponds to the projected area of the density function on the x-axis. So the motion is estimated by tracing the edges between non-zero area and zero area of the spectrum, and the x directional motion is canceled by shifting the spectrum in inverse direction. Next, the y directional motion is canceled by using a new constraint condition, with which the motion component and the true image component can be separated. This algorithm is shown to be effective by using a phantom image with simulated motion.

  • PDF

Cancellation of MRI Motion Artifact in Image Plane

  • Kim Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • In this study, a new algorithm for canceling a MRI artifact due to the translational motion In the image plane is described. Unlike the conventional iterative phase retrieval algorithm, in which there is no guarantee for the convergence, a direct method for estimating the motion is presented. In previous approaches, the motions in the x(read out) direction and the y(phase encoding) direction were estimated simultaneously. However, the feature of x and y directional motions are different from each other. By analyzing their features, each x and y directional motion is canceled by the different algorithms in two steps. First, it is noticed that the x directional motion corresponds to a shift of the x directional spectrum of the MRI signal, and the non-zero area of the spectrum just corresponds to the projected area of the density function on the x axis. So the motion is estimated by tracing the edges between non-zero area and zero area of the spectrum, and the x directional motion is canceled by shifting the spectrum in an reverse direction. Next, the y directional motion is canceled by using a new constraint condition, with which the motion component and the true image component can be separated. This algorithm is shown to be effective by using a phantom image with simulated motion.

  • PDF

A Study on the analysis of ship motion using system identification method (시스템 식별법을 이용한 선체운동 해석에 관한 연구)

  • Song, Jaeyoung;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.271-271
    • /
    • 2019
  • Estimating ship motion is difficult because it take place in complex environments.. Estimating ship motion is an important factor in ensuring the safety of ship, so accurate estimates are needed. Existing motion-related studies compare the apparent motion of the model acquired and the reference model by experimenting with the ship motion on a particular alignment, making it difficult to intuitively estimate the hull motion. This study introduces the concept of estimating the characteristics of ship motion as a transfer function through pole-zero interpretation and frequency response analysis by applying the method of transfer function of Linear-Time Invariant system. Ship motion analysis model using Linear-Time Invariant system is consist with 1) wave as input signal 2) ship motion as output signal 3) hull defined as black box. This model can be defined by numericalizing the ship motion as a transfer function and is expected to facilitate the characterization of the ship motion through pole-zero analysis and frequency response analysis.

  • PDF

Automatic Motion Generator and Simulator for Biped Walking Robots (이족 보행 로봇을 위한 자동 모션 제너레이터 및 시뮬레이터)

  • 최형식;전창훈;오주환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.948-953
    • /
    • 2004
  • For stable walking of various biped walking robots(BWR), we need to know the kinematics, dynamics and the Zero Moment of Point(ZMP) which are not easy to analyze analytically. In this reason, we developed a simulation program for BWRs composed of 4 degree-of-freedom upper-part body and 12 degree-of-freedom lower-part of the body. To operate the motion simulator for analyzing the kinematics and dynamics of BWES, inputs for the distance between legs, base angle, choice of walking type, gaits, and walking velocity are necessary. As a result, if stability condition is satisfied by the simulation, angle data for each actuator are generated automatically, and the data are transmitted to BWRS and then, they are actuated by the motion data. Finally, we validate the performance of the proposed motion simulator by applying it to a constructed small sized BWR.

  • PDF

Digital Image Stabilization in the 2-axes Stabilization System using Zero-crossing of the Rotational Motion (2축 안정화 시스템에서 zero-crossing을 이용한 영상 안정화)

  • Kim, Dong-No;Kim, Gi-Hong;Jeong, Tae-Yeon;Gwon, Yeong-Do;Kim, Deok-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.396-399
    • /
    • 2003
  • This paper proposes a simple digital image stabilization(DIS) algorithm for roll motion, which has not been compensated in the 2-axes mechanical stabilization system, using aero-crossing of the rotational motion vectors. The 2-axes stabilization system cannot stabilize rolled images, which causes the deteriorated performance of the object detection and recognition. In this paper, we propose the rotational motion stabilization algorithm which estimates and compensates global motion in terms of rotational center and rotational angle. Both the synthetic images with undesirable rotational disturbance and the real images from 2-axes stabilization system are used to evaluate the proposed algorithm. The results show that our proposed algorithm suppresses the undesirable rotational disturbance effectively.

  • PDF

Numerical Simulation of Buoyant Diffusion Flame (부력을 받는 확산화염에 대한 수치 시뮬레이션)

  • Oh, Chang-Bo;Lee, Eui-Ju
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.234-237
    • /
    • 2008
  • A direct numerical simulation (DNS) code suitable for the prediction of buoyant jet diffusion flames was developed in this study. The thermodynamic and transport properties were evaluated using CHEMKIN package to enhance the prediction performance of the developed DNS code. A two dimensional simulations were performed for the jet diffusion flames in normal and zero-gravity conditions where the Froude numbers are 5 and infinity, respectively. The simulated buoyant jet diffusion flame in normal gravity showed that the unsteady and dynamic motion although the reynolds number is low (400). It was identified that the flame in normal gravity flickered periodically. The periodic motion of the flame disappeared in zero-gravity condition. The dynamic motion of the buoyant jet diffusion flame could be well understood by comparing the flame structures obtained by the simulations of normal and zero-gravity conditions.

  • PDF

FUZZY SOGIC CONTROL FO DIRECT DRIVE ROBOT MANIPULATORS

  • Kang, Chul-Goo;Kwak, Hee-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.428-433
    • /
    • 1994
  • This investigates the feasibility of applying fuzzy ogic controllers to the motion tracking control of a direct drive robot manipulator to deal with highly nonlinear and time-varying dynamics associated with robot motion. A fuzzy logic controller with narrow shape of membership functions near zero and wide shape far away zero is analyzed. Simulation and experimental studies have been conducted for a 2 degree of freedom direct drive SCARA robot to evaluate control performances, Fuzzy logic controllers have shown control performances that are often better, or at least, as good as those of conventional PID controllers. Furthermore, the control performance of fuzzy logic controllers can be improved by selecting membership functions of narrow shapes near zero and wide shapes far away zero.

  • PDF

Development an embedded module for nondirectional wave spectrum analysis

  • Park, Soo-Hong;Wong, Sheng-Chao
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.454-461
    • /
    • 2008
  • This embedded module measures significant wave height and zero crossing periods through spectral energy from a record of time series heave motion. An ARM7TDMI core microcontroller serves as the main control unit which performs the appropriate control and signal conditioning. Monitored wave characteristic is transmitted with satellite modem. Mathematical equations on signal conditioning and experiments procedures are documented in this paper.

Study on a Simulator for Generating Side Walking Path of the Biped Walking Robot (이족보행로봇의 횡보행 경로생성을 위한 시뮬레이터 연구)

  • Choi, Hyeung-Sik;Jeon, Chang-Hoon;Kang, Jin-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1285-1295
    • /
    • 2008
  • A research on a simulator for a side walking path of a 16 degree-of-freedom (d.o.f) biped walking robot(BWR) which is composed of 4 d.o.f upper-part body and 12 d.o.f lower-part of the body is presented. For generation of stable side walking motion, the kinematics, dynamics and the zero moment of point(ZMP) of the BWR were analyzed analytically and included in the simulator. To operate the motion simulator for stable side walking of the BWR, a graphic user interface program was developed which needs inputs for the side distance between legs, base joint angle, walking type, and walking velocity. The simulator was developed to generate joint angle data of legs for side walking, and the data are transmitted to the BWR for stable side walking. In the simulator, a new path function for smooth walking motion was proposed and applied to the simulator and actual motion of a BWR. Also for actual side walking, an algorithm for estimating backlashes of the actuating joint motors was proposed and included in the simulator. To validate the performance of the proposed motion simulator, the simulator was operated and its side walking data of the simulator were generated for a period of side walking.

Transform-domain Wyner-Ziv Residual Coding using Temporal Correlation (시간적 상관도를 활용한 변환 영역 잔차 신호 Wyner-Ziv 부호화)

  • Cho, Hyon-Myong;Eun, Hyun;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.140-151
    • /
    • 2012
  • In Wyner-Ziv coding, key picture is encoded by conventional H.264/AVC intra coding which has low complexity. Although inter coding is more efficient than intra coding, its complexity is much higher than intra coding due to its motion estimation. Since the main feature of Wyner-Ziv coding is low complexity of encoder, inter coding is not suitable to encode key picture in Wyner-Ziv coding. However, inter picture coding with zero motion vector can be usable for Wyner-Ziv key picture coding instead of intra coding. Moreover, while current transform-domain Wyner-Ziv residual coding only utilizes temporal correlation of WZ picture, if zero motion coding is jointly used to encode key picture in transform-domain Wyner-Ziv residual coding, there will be a significant improvement in R-D performance. Experimental results show that the complexity of Wyner-Ziv coding with the proposed zero motion key picture coding is higher than conventional Wyner-Ziv coding with intra key picture coding by about 9%, however, there are BDBR gains up to 54%. Additionally, if the proposed zero motion key coding is implemented on top of the transform-domain Wyner-Ziv residual coding, the result shows rate gains up to 70% in BDBR compared to conventional Wyner-Ziv coding with intra key picture coding.