• Title/Summary/Keyword: Zero discharge system

Search Result 54, Processing Time 0.027 seconds

Construction Method of Zero Discharge System for Environmental Energy Complex in Landfill (매립지내 환경에너지단지의 무방류 시스템 구축방안)

  • Chun, Seung-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.581-590
    • /
    • 2013
  • A research was performed for zero discharge system of waste water which is produced from energy recovery process of waste and biomass. Leachate and all kinds of waste water should be separated and integrated into three categories in addition to converting existing leachate treatment facility into waste water treatment facility as well as introducing a management system of reverse osmosis membrane facility and bioreactor landfill. Following these conditions to better water treatment process, it was likely to produce over 3,000 tons of low-grade recycling water and 2,000 tons of high-grade recycling water per day when zero discharge system of waste water is applied starting from 2016. Economical efficiency was also surveyed in total treatment fee. Present system costs 18,129 million won per year, and suggested zero discharge system would cost 15,789 million won per year.

New Secondary Battery Charger/Discharger Available for Zero Voltage Discharge (영전압 방전이 가능한 새로운 방식의 2차전지 충방전기)

  • Chung, Dae-Taek;Chae, Soo-Yong;Hong, Soon-Chan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.11
    • /
    • pp.62-74
    • /
    • 2012
  • This paper proposes a new secondary battery charger/discharger available for zero voltage discharge which is used for test equipments and formation process. The proposed system is a switching type converter, and thus the system is high efficiency and more compact as compared with linear type charger/discharger. Conventional switching type charger/discharger can not discharge secondary batteries to zero voltage because of voltage drops in the switching elements and long distributing line(typically 10m). However, the proposed system is able to discharge the battery to zero voltage in constant current mode regardless of the voltage drops. In this paper, we analyze the proposed charger/discharger and the validity of the system is verified by simulation and experiment.

A Novel Battery Charge/Discharge System with Zero Voltage Discharge Function (영전압 방전 기능을 갖는 새로운 배터리 충방전시스템)

  • Nguyen, Quang Manh;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.169-170
    • /
    • 2013
  • One important test for formation and grading of the lithium-ion battery is to confirm the performance of the battery while discharging battery down to zero volts. In this paper, a novel charge/discharge converter with zero-voltage discharge function is proposed. The proposed converter is able to discharge the battery until the voltage reaches to zero volts. The phase-shifted full bridge method is used to charge the battery and the current-fed push-pull method with bidirectional switches is used for the discharge. The ZVS turn-on is achieved in the charge operation and the ZVS turn-off in the discharge operation. The performance of the system is verified by the experiments using lithium-ion batteries.

  • PDF

Assessment of Field Applicability of a Zero Discharge and Reuse System (무방류 재이용 시스템 현장 적용성 평가)

  • Cho, Kyung-Sook;Lee, Kwang-Ya
    • Current Research on Agriculture and Life Sciences
    • /
    • v.29
    • /
    • pp.75-81
    • /
    • 2011
  • This study performed field examinations of a zero discharge and reuse system developed by Hong and Choi(2009). The system installed one of villages located in Hyoryeong-myeon, Gunwee-gun for the experiments. The zero discharge and reuse system consists of anoxic, FES (Ferrous Electricity System), Oxic, Cralifier processes for water treatments. The main feature of the system is to remove phosphorous by using Fe-ionizing module within the FES process. The water purification performances of the system were evaluated, while any defects for using the system were investigated through the field monitoring. It was found that the removal capacities of T-P, T-N, and BOD of the system meet the required water quality with outstanding performance from T-P by obtaining the results of over 90 % removal rates. The efficiency of T-P removal rate of the system found to be greatly influenced by whether using an automatic washing system to the Fe-ionizing module and conducting replacement of iron plate within a proper period.

  • PDF

Condenser cooling system & effluent disposal system for steam-electric power plants: Improved techniques

  • Sankar, D.;Balachandar, M.;Anbuvanan, T.;Rajagopal, S.;Thankarathi, T.;Deepa, N.
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.355-367
    • /
    • 2017
  • In India, the current operation of condenser cooling system & effluent disposal system in existing power plants aims to reduce drawal of seawater and to achieve Zero Liquid Discharge to meet the demands of statutory requirements, water scarcity and ecological system. Particularly in the Steam-Electric power plants, condenser cooling system adopts Once through cooling (OTC) system which requires more drawal of seawater and effluent disposal system adopts sea outfall system which discharges hot water into sea. This paper presents an overview of closed-loop technology for condenser cooling system and to achieve Zero Liquid Discharge plant in Steam-Electric power plants making it lesser drawal of seawater and complete elimination of hot water discharges into sea. The closed-loop technology for condenser cooling system reduces the drawal of seawater by 92% and Zero Liquid Discharge plant eliminates the hot water discharges into sea by 100%. Further, the proposed modification generates revenue out of selling potable water and ZLD free flowing solids at INR 81,97,20,000 per annum (considering INR 60/Cu.m, 330 days/year and 90% availability) and INR 23,760 per annum (considering INR 100/Ton, 330 days/year and 90% availability) respectively. This proposed modification costs INR 870,00,00,000 with payback period of less than 11 years. The conventional technology can be replaced with this proposed technique in the existing and upcoming power plants.

Development of a Zero Discharge and Reuse System for Rural Areas (농촌지역을 위한 무방류 재이용시스템 개발)

  • Hong, Min;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.91-96
    • /
    • 2009
  • This study describes a zero discharge and reuse system developed for rural areas. The purpose of the system is decontamination of used irrigation water for down-stream usage and reuse of wastewater in rural villages for preventing water shortage problem expected to happen in near future. The system consists of anoxic, FES (Ferrous Electricity System), Oxic, Cralifier processes. The main feature of the system is to remove phosphorous by using Fe-ionizing module. Indoor experiments were undertaken with a trial product of the system to test its performance. The removal capacities of T-P, T-N, and BOD were examined. Also the proper time for the replacement of iron plate module was tested as well as the efficiency of T-P removal rate based on the usage of an automatic washing system for the iron plate. As results, the system showed very good water purification performances through obtaining the results of over 90% removal rates from T-P, BOD, and 67% from T-N. The proper time period for replacement of iron plate was maximum 2 years, and also efficiency of T-P removal rate found to be greatly influenced by the usage of an automatic washing system from the test.

New Secondary Battery Charger/Discharger Available for Zero Voltage Discharge (영전압 방전이 가능한 새로운 방식의 2차전지 충/방전기)

  • Chae, Soo-Yong;Chung, Dae-Taek;Kim, Dong-Wook;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.250-251
    • /
    • 2012
  • This paper proposes a new secondary battery charger/discharger available for zero voltage discharge which is used for test equipments and formation. The proposed system is able to discharge the battery to zero voltage which does not matter to voltage drop of circuit. The validity of proposed system is verified by experiment.

  • PDF

A Fully Soft Switched Two Quadrant Bidirectional Soft Switching Converter for Ultra Capacitor Interface Circuits

  • Mirzaei, Amin;Farzanehfard, Hosein;Adib, Ehsan;Jusoh, Awang;Salam, Zainal
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • This paper describes a two quadrant bidirectional soft switching converter for ultra capacitor interface circuits. The total efficiency of the energy storage system in terms of size and cost can be increased by a combination of batteries and ultra capacitors. The required system energy is provided by a battery, while an ultra capacitor is used at high load power pulses. The ultra capacitor voltage changes during charge and discharge modes, therefore an interface circuit is required between the ultra capacitor and the battery. This interface circuit must have good efficiency while providing bidirectional power conversion to capture energy from regenerative braking, downhill driving and the protecting ultra capacitor from immediate discharge. In this paper a fully soft switched two quadrant bidirectional soft switching converter for ultra capacitor interface circuits is introduced and the elements of the converter are reduced considerably. In this paper, zero voltage transient (ZVT) and zero current transient (ZCT) techniques are applied to increase efficiency. The proposed converter acts as a ZCT Buck to charge the ultra capacitor. On the other hand, it acts as a ZVT Boost to discharge the ultra capacitor. A laboratory prototype converter is designed and realized for hybrid vehicle applications. The experimental results presented confirm the theoretical and simulation results.

A Conceptual Zero-Discharge System for Water Quality Management of the Nak-Dong River (낙동강 수질관리 방안-하수분리 무방류시스템의 개념적 고찰)

  • Park, Hee-Kyung;Hyun, In-Hwan;Park, Chung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.40-49
    • /
    • 1997
  • From water management point of view, the industrialization that we have achieved in the last decades brought out two major changes: water shortage and water quality deterioration. They are getting the big obstacles we must overcome to continuously pursue industrialization for further development in the next century. Many plans using dams and advanced treatment methods have been developed for control of quantity and quality, respectively. In this paper, an alternative is conceptually reviewed which is much different from the plans in regard that the alternative looks at system itself. It is based on an interceptor system coupling with a concept of zero-discharge. This system allows no discharge of wastewaters from point-sources to waterbodies which are very sensitive in terms of water quality. In addition reuse of treated effluents is emphasized to a maximum extent. The application of the system to the Nak-Dong river basin indicated that an interceptor system will need from the middle reaches of the basin where industrialization gets heavier. Since wastewaters are not directly discharged to the river, water quality of the down stream will improve. Treated effluents will be able to be reused at a number of industrial complex which currently get water from the Nak-Dong river. This reuse will help alleviate water shortage. The biggest problem anticipated is cost for building and operating such system. A cost-sharing plan among the beneficiaries is considered. Further research is suggested focusing on detailed engineering and technical matters for potential implementation.

  • PDF