• Title/Summary/Keyword: Zero current transition

Search Result 122, Processing Time 0.027 seconds

Transfer Characteristics of the Zero- VoltageTransition Pulse-Width - Modulation Boost Converter (Zero-Voltage-Transition Pulse-Width-Modulation Boost 컨버터의 전달 특성)

  • 김진성;박석하;김양모
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.148-156
    • /
    • 1996
  • Increasing the switching frquency is essential to achieve the high density of switched mode power supplies, but this leads to the increase of switching losses. A number of new soft switching converters have been presented ot reduce switching losses, but most of them may have some demerits, such as the increase of voltage/current stresses and high conduction losses. To overcome these problems, the ZVT-PWM converter has recently been presented. in this paper, the operation characteristics of the ZVT-PWM boost converter is analyzed, and the steady-states (DC) and small-signal model of this converter are derived and analyzed, and then the transfer functions of this converter are derived. The transfer functions of ZVT-PWM boost converter are similar to those of the conventional PWM boost converter, but the transfer characteristics are affecsted by te duty ratio and the switching frequency.

  • PDF

The study on comparison of soft-switching techniques for the improvement of efficiency in single phase-full bridge inverter (단상풀브릿지 인버터효율향상을 위한 소프트 스위칭 기법 비교에 관한 연구)

  • Lim, Sung-Hun;Lee, Seong-Ryoung;Han, Byung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1215-1217
    • /
    • 2000
  • For the application of soft-switching technique to single Phase-full bridge inverter. in this paper ZCT(Zero Current Transition) and ZVT(Zero Voltage Transition) techniques proposed previously are compared and discussed the merit and demerit of both. Both have a excellency that can reduce the number of auxiliary switch and resonant circuit compared to other techniques and achive soft-switching in auxiliary switch itself. Therefore, it has enabled us to have benifits of realizing high efficiency and reliability, low EMI for high switching frequency and reducing the cost as well as size of device.

  • PDF

A New Zero-Current-Transition Buck Converter (새로운 영전류 천이형 벅 컨버터)

  • 최현칠
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.556-563
    • /
    • 2001
  • In this paper a new zero current transition pulse width modulation (ZCT-PWM) buck converter is proposed to combine the desirable feature of both the conventional buck converter and resonant converters. In this proposed scheme an auxiliary circuit is added to the conventional buck converter and used to achieve soft-switching for both the main switch and the freewheeling diode while not incurring any additional losses due to auxiliary circuit And this converter operates exactly like the conventional PWM converter except for a short particular time interval. The operation of the proposed converter is explained and analyzed. and design guidelines are presented. To validate the feasibility of the proposed converter, a 100KHz 180-W prototype is built and tested.

  • PDF

A New Soft-switched PWM Boost Converter with a Lossless Auxiliary Circuit (스위칭 손실 없는 보조회로를 이용한 고효율 부우스트 컨버터 설계)

  • Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.149-158
    • /
    • 2006
  • A soft-switching scheme for the PWM boost converter, ZCT (Zero current transition : ZCT) boost converter Is newly proposed to obtain the desirable features of both the conventional BWM boost and resonant converters such as easy of control, reduced switching losses and stresses, an4 low EMI. In order to achieve the soft-switching action, the proposed scheme employs an auxiliary circuit, which is added to the conventional boost converter and used to achieve soft-switching for both the main switch and the output diode while not incurring any additional losses due to auxiliary circuit itself. The basic operations, in this paper, we discussed and design guidelines are presented. Through a 100kHz, 60-W prototype, the usefulness of the proposed scheme is verified.

Zero Voltage Transition Full Bridge Boost Converter for Single Stage Power Factor Correction (Single Stage 역률보상을 위한 ZVT 풀 브릿지 부스트 컨버터)

  • Song, D.I.;Kwon, S.K.;Cho, J.G.;Back, J,W.;Kim, W.H.;Kim, J.S.;Rim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.351-354
    • /
    • 1996
  • A zero-voltage-transition(ZVT) full bridge (FB) boost converter for single stage power factor correction (PFC) in distributed power system is proposed. A simple auxiliary circuit provides zero-voltage-switching(ZVS) condition to all semiconductor devices without imposing additional voltage and current stresses and loss of PWM capability. The proposed boost converter provides both input power factor correction and direct conversion from $110{\sim}220VAC$ line to 300VDC bus with single power stage. Operational principle, analysis of the proposed converter are described and verified by computer simulation and experimental results from a 1.5 kW, 80 kHz laboratory prototype.

  • PDF

New ZVZCT Bidirectional DC-DC Converter Using Coupled Inductors

  • Qian, Wei;Zhang, Xi;Li, Zhe;Jin, Wenqiang;Wiedemann, Jochen
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.11-23
    • /
    • 2019
  • In this study, a novel zero voltage zero current transition (ZVZCT) bidirectional DC-DC converter is proposed by employing coupled inductors. This converter can turn the main switch on at ZVZCT and it can turn it off with zero voltage switching (ZVS) for both the boost and buck modes. These characteristics are obtained by using a simple auxiliary sub-circuit regardless of the power flow direction. In the boost mode, the auxiliary switch achieves zero current switching (ZCS) turn-on and ZVS turn off. Due to the coupling inductors, this converter can make further efficiency improvements because the resonant energy in the capacitor or inductor can be transferred to the load. The main diode operates with ZVT turn-on and ZCS turn-off in the boost mode. For the buck mode, there is a releasing circuit to conduct the currents generated by the magnetic flux leakage to the output. The auxiliary switch turns on with ZCS and it turns off with ZVT. The main diode also turns on with ZVT and turns off with ZCS. The design method and operation principles of the converter are discussed. A 500 W experimental prototype has been built and verified by experimental results.

A ZVT applied SRM converter (ZVT 방식을 적용한 SRM 구동용 컨버터)

  • 김원호;조정구;김종수;임근희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.106-112
    • /
    • 1996
  • A ZVT (zero voltage transition) converter for SRM (switched reluctance motor) drives is proposed in this study. By adding a ZVT-chopping switch in the front-end, all switches in the machine side converter can be operated without any chopping to regulate phase current. This allows the use of low-cost and slow-switching devices for the machine side converter. The ZVT circuitry allows high frequency operation of th echopping switch, which enhnaces the system dynamcis and phase-current ripples. High efficiency of th eintegrated converter is obtained due to low switching losses.

  • PDF

Lyapunov Based Adaptive-Robust Control of the Non-Minimum phase DC-DC Converters Using Input-Output Linearization

  • Salimi, Mahdi;Zakipour, Adel
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1577-1583
    • /
    • 2015
  • In this research, a combined adaptive-robust current controller is developed for non-minimum-phase DC-DC converters in a wide range of operations. In the proposed nonlinear controller, load resistance, input voltage and zero interval of the inductor current are estimated using developed adaptation rules and knowing the operating mode of the converter for the closed-loop control is not required; hence, a single controller can be employed for a wide load and line changes in discontinuous and continuous conduction operations. Using the TMS320F2810 digital signal processor, the experimental response of the proposed controller is presented in different operating points of the buck/boost converter. During transition between different modes of the converter, the developed controller has a better dynamic response compared with previously reported adaptive nonlinear approach. Moreover, output voltage steady-state error is zero in different conditions.

A Study on the Three Phase Inverter using Auxiliary Switches (보조 스위치를 이용한 3상 ZCS 인버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Baek, Soo-Hyun;Choi, Geun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.155-158
    • /
    • 2004
  • This paper proposes a soft-transition control strategy for a three phase ZCS(Zero Current Switching) inverter circuit. Each phase leg of inverter circuit consists of an LC resonant tank, two main switches, and two auxiliary switches. This paper presents design consideration via a study example of a three phase prototype inverter for motor drives. A simple device tester with zero current switching capability is proposed to select eligible auxiliary switches. The principle of operation, feature and design consideration is illustrated and verified through the experiment with a 2.2kW 5kHz IGBT based experimental circuit.

  • PDF

A Study on the Parallel Operation and Control Loop Design of ZVT-Full Bridge DC/DC Converter (ZVT 풀 브리지 DC/DC 컨버터의 병렬 운전 및 제어기 설계에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Yoon, Suk-Ho;Chang, Sung-Won;Lee, Kyu-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.324-328
    • /
    • 2001
  • This paper presents parallel operation and control loop design of ZVT(Zero Voltage Transition) Full Bridge DC/DC Converter. At parallel operation of ZVT Full Bridge Converter, dynamic current shared inductor devides the same current of unit converter and ZVT circuit and aids to high efficiency in the system. Base on the modeling of ZVT. Full Bridge Converter, the control loop is designed using a simple two-pole, one-zero compensation circuit. To show the validity of the design procedures, the small signal analysis of the closed loop system and open loop system is carried out and the superiority of the dynamic characteristics is verified through the experiment with a 2kW, 50kHz prototype converter.

  • PDF