• 제목/요약/키워드: Zero Moment Point

검색결과 122건 처리시간 0.034초

Flexible tactile sensor array for foot pressure mapping system in a biped robot

  • Chuang, Cheng-Hsin;Liou, Yi-Rong;Shieh, Ming-Yuan
    • Smart Structures and Systems
    • /
    • 제9권6호
    • /
    • pp.535-547
    • /
    • 2012
  • Controlling the balance of motion in a context involving a biped robot navigating a rugged surface or a step is a difficult task. In the present study, a $3{\times}5$ flexible piezoelectric tactile sensor array is developed to provide a foot pressure map and zero moment point for a biped robot. We introduce an innovative concept involving structural electrodes on a piezoelectric film in order to improve the sensitivity. The tactile sensor consists of a polymer piezoelectric film, PVDF, between two patterned flexible print circuit substrates (FPC). Additionally, a silicon rubber bump-like structure is attached to the FPC and covered by a polydimethylsiloxane (PDMS) layer. Experimental results show that the output signal of the sensor exhibits a linear behavior within 0.2 N ~ 9 N, while its sensitivity is approximately 42 mV/N. According to the characteristic of the tactile sensor, the readout module is designed for an in-situ display of the pressure magnitudes and distribution within $3{\times}5$ taxels. Furthermore, the trajectory of the zero moment point (ZMP) can also be calculated by this program. Consequently, our tactile sensor module can provide the pressure map and ZMP information to the in-situ feedback to control the balance of moment for a biped robot.

무한 탄성 평판상의 기준점에 전달되는 진동인텐시티의 능동제어 (Active Control of Vibrational Intensity at a Reference Point in an Infinite, Elastic Plate)

  • 김기만
    • 한국소음진동공학회논문집
    • /
    • 제11권4호
    • /
    • pp.22-30
    • /
    • 2001
  • In this paper, active control of vibrational intensity at a reference point in an infinite, elastic plate was discussed. The plate is excised harmonically by a vibrating source, which has a vertical point force. The optimal condition of controller was investigated to minimize the vibrational intensity being transmitted from the vibrating source to a reference point. Hence the method of feedforward control was employed for the control strategy and then the cost function was evaluated to find the optimal control force. Three types of control force (Vertical force, Moment, and Coupling force (a set of vertical force and moment) ) and controller's positions were examined to define the optimal condition of the controller. The vibrational intensity at a reference point was found to be reduced down to a zero level, compared with the uncontrolled case. Especially maximum reduction of vibrational intensity was achieved when the controller was collinearly positioned between a vibrating source and a reference point.

  • PDF

크리깅을 이용한 제로 모멘트 크레인에 적용되는 조인트의 설계 (Design of a Mechanical Joint for Zero Moment Crane By Kriging)

  • 김재욱;장인권;곽병만
    • 대한기계학회논문집A
    • /
    • 제34권5호
    • /
    • pp.597-604
    • /
    • 2010
  • 본 논문에서는 모바일하버의 하역 시스템으로 특화되어 개발한 제로 모멘트 크레인에 적용되는 조인트를 설계하고자 한다. 해당 조인트는 제로 모멘트 포인트의 개념에 기반하여 제로 모멘트 크레인을 안정화시키는데 중요한 역할을 수행한다. 이 목적을 위해서는 크고 다양한 형태의 하중을 견딜 수 있으며, 또한 2 방향의 자유도를 허용할 수 있어야 한다. 통상적인 설계 과정을 거쳐, 유니버셜 조인트와 스피리컬 조인트를 결합한 후 가변형 구름 요소를 적용한 새 디자인을 제안하였다. 구름 요소는 하중을 분산시키며 하역 과정 동안의 동력 손실을 줄여준다. 시스템의 복잡성과 최적화 과정의 효율성을 고려하여, 크리깅 기반 근사 최적화 기법을 선정하였다. 설계된 조인트를 검증하기 위해, 구조 해석을 수행하고, 축소 시제품을 제작하였다.

이족보행로봇의 횡보행 경로생성을 위한 시뮬레이터 연구 (Study on a Simulator for Generating Side Walking Path of the Biped Walking Robot)

  • 최형식;전창훈;강진일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1285-1295
    • /
    • 2008
  • A research on a simulator for a side walking path of a 16 degree-of-freedom (d.o.f) biped walking robot(BWR) which is composed of 4 d.o.f upper-part body and 12 d.o.f lower-part of the body is presented. For generation of stable side walking motion, the kinematics, dynamics and the zero moment of point(ZMP) of the BWR were analyzed analytically and included in the simulator. To operate the motion simulator for stable side walking of the BWR, a graphic user interface program was developed which needs inputs for the side distance between legs, base joint angle, walking type, and walking velocity. The simulator was developed to generate joint angle data of legs for side walking, and the data are transmitted to the BWR for stable side walking. In the simulator, a new path function for smooth walking motion was proposed and applied to the simulator and actual motion of a BWR. Also for actual side walking, an algorithm for estimating backlashes of the actuating joint motors was proposed and included in the simulator. To validate the performance of the proposed motion simulator, the simulator was operated and its side walking data of the simulator were generated for a period of side walking.

척수마비 재활훈련용 이족보행 RGO 로봇의 Dynam ic PLS 생체역학적 특성분석 <응력해석과 FEM을 중심으로> (Analysis of a Dynamic PLS of the Biped Walking RGO-Robot for a Trainning of Rehabilitation)

  • 김명회;장대진;박창일;박영필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.136-141
    • /
    • 2002
  • This paper presents a design and a control of a biped walking RGO-robot and dynamic walking simulation for this system. The biped walking RGO-robot is distinguished from other one by which has a very light-weight and a new AGO type with servo motors. The gait of a biped walking RGO-robot depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the biped walking RGO-robot. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to train effectively with a biped walking AGO-robot.

  • PDF

재활훈련용 이쪽보행 RGO 로봇의 Dynamic PLS 설계와제어 - <응력해석과 FEM을 중심으로> (Design and Control of a Dynamic PLS of the Biped Walking RGO-Robot for a Trainning of Rehabilitation)

  • 김명회;장대진;박창일;박영필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.238-243
    • /
    • 2002
  • This paper presents a design and a control of a biped walking AGO-robot and dynamic walking simulation for this system. The biped walking RGO-robot is distinguished from other one by which has a very light-weight and a new RGO type with servo motors. The gait of a biped walking AGO-robot depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the biped walking AGO-robot. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to train effectively with a biped walking RGO-robot.

  • PDF

SPMT의 안정성에 관한 연구 (A Study on the Stability of SPMT)

  • 유대완;조관준;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권2호
    • /
    • pp.250-257
    • /
    • 2012
  • 오늘날 큰 선박 및 구조물은 블록 형태로 만들어지고 조립된다. 수천 톤의 큰 대형 선박은 도크 또는 육상에서 큰 블록을 조립함으로써 짧은 기간 내에 만들어 진다. 이동 과정에 경사면을 만나게 되면 이동물이 기울어지게 되고 기울어진 상태로 경사면을 통과하는 경우, 블록이 전복하는 사고가 종종 발생한다. 본 연구는 트렌스포터의 이송 중량물의 평면상에서 무게 중심을 구하고, 더불어 3차원 상의 무게 중심을 구한다. 또한, ZMP(Zero Moment Point)를 이용하여 물체가 넘어지는 각도를 예측하는 연구를 수행하였다. 특히 경사면에서 물체의 이송과정 안정성을 시뮬레이션을 통하여 확인하였다.

목표 ZMP 궤적 기반 휴머노이드 로봇 이족보행의 최적 관절궤적 생성 (Optimal Joint Trajectory Generation for Biped Walking of Humanoid Robot based on Reference ZMP Trajectory)

  • 최낙윤;최영림;김종욱
    • 로봇학회논문지
    • /
    • 제8권2호
    • /
    • pp.92-103
    • /
    • 2013
  • Humanoid robot is the most intimate robot platform suitable for human interaction and services. Biped walking is its basic locomotion method, which is performed with combination of joint actuator's rotations in the lower extremity. The present work employs humanoid robot simulator and numerical optimization method to generate optimal joint trajectories for biped walking. The simulator is developed with Matlab based on the robot structure constructed with the Denavit-Hartenberg (DH) convention. Particle swarm optimization method minimizes the cost function for biped walking associated with performance index such as altitude trajectory of clearance foot and stability index concerning zero moment point (ZMP) trajectory. In this paper, instead of checking whether ZMP's position is inside the stable region or not, reference ZMP trajectory is approximately configured with feature points by which piece-wise linear trajectory can be drawn, and difference of reference ZMP and actual one at each sampling time is added to the cost function. The optimized joint trajectories realize three phases of stable gait including initial, periodic, and final steps. For validation of the proposed approach, a small-sized humanoid robot named DARwIn-OP is commanded to walk with the optimized joint trajectories, and the walking result is successful.

인간 관절 에너지 분석을 통한 이족로봇의 자연스러운 보행 제어 (Control Gait Pattern of Biped Robot based on Human's Sagittal Plane Gait Energy)

  • 하승석;한영준;한헌수
    • 제어로봇시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.148-155
    • /
    • 2008
  • This paper proposes a method of adaptively generating a gait pattern of biped robot. The gait synthesis is based on human's gait pattern analysis. The proposed method can easily be applied to generate the natural and stable gait pattern of any biped robot. To analyze the human's gait pattern, sequential images of the human's gait on the sagittal plane are acquired from which the gait control values are extracted. The gait pattern of biped robot on the sagittal plane is adaptively generated by a genetic algorithm using the human's gait control values. However, gait trajectories of the biped robot on the sagittal plane are not enough to construct the complete gait pattern because the biped robot moves on 3-dimension space. Therefore, the gait pattern on the frontal plane, generated from Zero Moment Point (ZMP), is added to the gait one acquired on the sagittal plane. Consequently, the natural and stable walking pattern for the biped robot is obtained, as proved by the experiments.