• Title/Summary/Keyword: Zeolite 합성

Search Result 245, Processing Time 0.04 seconds

Synthesis, Characterization and Structure of NaY Zeolite (NaY 제올라이트의 합성 및 물성과 구조해석)

  • 서동남;김익진
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.215-219
    • /
    • 2001
  • NaY Zeolite를 Autoclave의 자생압력하에 90℃에서 6-36시간 수열 합성법에 의해 합성하였다. 합성된 NaY Zeolite는 1-2㎛의 크기를 갖는 octahedral 구조이고, 격자상수(a)는 23.9230인 NaY zeolite가 단일상으로 합성되었다. SiO₂/Al₂O₃의 몰비는 NaY type인 3.65이고, 상용 NaY zeolite의 BET(509.3㎡/g)에 비하여 Muti- point BET가 약 607.2로 100㎡/g 증가하였고, Pore volume은 0.2416cc/g에 비하여 0.3149cc/g로 증가하였다.

Developement of Heavy Metal Adsorbent Utilising Natural Zeolite (천연(天然) Zeolite를 이용(利用)한 중금속(重金屬) 흡착제(吸着劑)의 개발(開發))

  • Kim, S.S.;Park, M.;Hur, N.H.;Choi, J.
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.1
    • /
    • pp.11-19
    • /
    • 1991
  • This study was carried out to develop the low-priced adsorbent by synthesizing the zeolite of high CEC with the natural zeolite and examining the ability of this zeolite to adsorb heavy metals. The dominant clay minerals were clinoptilolite and mordenite in natural zeolite, while phillipsite in the synthesized zeolite. Adsorption reaction of Cu and Zn on clays were reached to equilibrium after 1 hr. The amount of adsorption was increased as the concentrations of heavy metals or the initial pH of suspension was increased. The synthesized zeolite adsorbed heavy metals about twice as much as the natural zeolite. The adsorption of heavy metals on the synthesized zeolite was less affected by the initial pH of suspension than that on natural zeolite. At cumulative adsorption, the synthesized zeolite adsorbed much more heavy metals at early three treatments than the natural zeolite did. The amount of desorption by chloride salts was increased as the concentration of chloride salts was increased. The ability of salt to desorb was in the order of NaCl>$CaC1_2$>$AlC1_3$. It is estimated that the ability of the synthesized zeolite to remove heavy metals was better than that of the natural zeolite.

  • PDF

The Development of Absorption Elements of Ceramic Rotors for the Semiconductor Clean Room System (반도체 클린룸용 세라믹 Rotor 흡착제 개발)

  • 서동남;하종필;정미정;문인호;조상준;김익진
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • The present invention relates to a absorption rotor for removed VOC(volatile organic compound) and humidity in semiconductor clean room system. A absorption rotor medium is made by NaX zeolite and TS-1 zeolite formed on a honeycomb matrix of ceramic papers. The crystallization of NaX zeolite was hydrothermal reaction, and NaX zeolite crystals of a uniform particle size of 5$\mu$m were synthesized that NaX zeolite seed crystals (2~3$\mu$m) added in a batch composition at levels of 3~15 wt$\%$. The seeding resulted in an increase in the fraction of large crystals compared with unseeded batches and successfully led to a uniform NaX zeolite crystal. The microporous zeolite-type titanosilicate(TS-1) was synthesized by different of the reactant solution pH. The pH range of reactant solution has been changed from 10.0 to 11.5 TS-1 zeolite (ETS-10), having a large pore(8~10 $\AA$), was synthesized at 10.4 of pH, since TS-1 zeolite (ETS-4), having a small pore(3~5$\AA$), was synthesized at 11.5 of pH.

  • PDF

Synthesis and characterization of microporous TS-1 zeolite(MFI) (Microporous TS-1 Zeolite(MFI)의 합성과 특성)

  • 강선명;이희수;김익진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.309-314
    • /
    • 1999
  • A microporous zeolite-type tianosilicate (TS-1), new catalysis elements, was synthesized by differents of the reactant solution pH. The range of reactant solution pH has from 10.0 to 12.4 TS-1 Zeolite (ETS-10), having a large pore (8~10 ${\AA}$), was synthesized at 10.4 of pH, since TS-1 Zeolite (ETS-4), having a small pore (3~5 ${\AA}$), was synthesized at 11.5 of pH. Also the two materials simultaneously existed at the intermediate pH. Crystallization, physico chemical characteristics of synthesized TS-1 Zeolite were investigated by XRD, XRF, SEM and FT-IR techniques.

  • PDF

Synthesis of Columnar Na-P Zeolite by Hydrothermal Process from Natural Zeolite of Korea (천연 Zeollte로부터 열수합성에 의한 주상 Na-P Zeolite합성)

  • Zhang, Yong-Seon;Jung, Pil-Kyun;Kim, Sang-Hyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.357-366
    • /
    • 2003
  • This study was conducted to develop n convenient and efficient granular type absorbent with high CEC from powdery zeolite, which is a waste produced while crushing the natural zeolite of Korea to get a particular particle size. The change of mineralogical characteristics during hydrothermal alternation of natural zeolite to Na-P zeolite in alkaline solution at various reaction times was determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and total elemental analysis. The columnar aggregate of Na-P Zeolite was produced by calcinating the natural zeolite-charcoal extrudates of about 3 mm diameter. In 24 hours reaction, clinoptillonite, mordenite and feldspar in natural zeolite were disappeared by 3 N NaOH treatment, while Na-P Zeolite with spherical granular structure was newly detected by XRD. As increasing reaction time, Si/Al ratio in remaining solution was deceased. The CEC of the synthesized material increased more than 2 times compared with that of natural zeolite, although the diameter of Na-P zeolite were rather increased.

Synthesis of Zeolite P1 and Analcime from Sewage Sludge Incinerator Fly Ash (하수슬러지 소각 비산재를 이용한 제올라이트 P1 및 Analcime의 합성)

  • Lee, Je-Seung;Chung, Sook-Nye;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.659-665
    • /
    • 2008
  • This study is about zeolite synthesis from the sewage sludge incinerator fly ash of "S" sewage treatment center located in Seoul. For this purpose, the properties of raw fly ash as starting material, the hydrothermal conditions for zeolite synthesis and the environmental applicabilities of synthesized zeolites were examined. Fly ash from sewage sludge incinerator has large quantities of SiO$_2$ and Al$_2$O$_3$ and their contents are 42.8 wt.% and 21.2 wt.% respectively. So fly ash is considered to be possible starting material for zeolite synthesis. The results from leaching test of fly ash showed that the concentration of hazardous metals were very low as compared with the Korea leaching standard of the Waste Management Law. But the concentration from total recoverable test of fly ash were higher than the fertilizer standard of Fertilizer Management Law. Major zeolite products synthesized by hydrothermal reaction are analcime in teflon vessel and zeolite P1 in borosilicate flask. Optimum conditions for the synthesis of analcime were 1 N of NaOH concentration, 16 hour of reaction time and 135$^{\circ}C$ of reaction temperature. For the zeolite P1 formation, the proper conditions were demonstrated to be 5 N of NaOH concentration, 16 hour reaction time and 130$^{\circ}C$ of reaction temperature in this study. Hazardous metal contents in the analcime product are similar with those in raw fly ash. In case of the zeolite P1, the contents are reduced to nearly a half. Raw fly ash and the analcime product showed NH$_4{^+}$ ion exchange capacity of 0$\sim$1.0 mg of NH$_4{^+}$g$^{-1}$ and 3.0$\sim$7.4 mg of NH$_4{^+}$g$^{-1}$, respectively. However, the zeolite P1 product reached exchange capacity to 14.6$\sim$17.8 mg of NH$_4{^+}$g$^{-1}$. This values are in the range of those of natural clinoptilolite and phillipsite. From this point of view, zeolite synthesis from sewage treatment sludge incinerator fly ash is a good alternative for solid waste recycling.

Synthesis of CdS Quantum Dots Using Zeolite-on-Glass and Analysis of Their Properties (Zeolite-on-glass를 이용한 CdS 양자점 합성과 특성 분석)

  • Lee, Eun-Sun;Kim, Jun-Hyung;Ha, Kwang;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.175-176
    • /
    • 2006
  • Zeolite의 이온교환 특성과 균일한 기공과 결정 모양을 가지는 구조적 특성을 이용하여 CdS 양자점 클러스터를 합성하였다. 합성된 CdS-Zeolite는 구조적으로 안정된 나노 크기의 새로운 반도체 물질이 된다. 또한 Zeolite 결정들이 유리판에 밀집하여 배열되는 경향을 이용하므로 CdS 양자점이 합성된 제올라이트를 기판에 정렬, 박막을 형성한다. CdS-Zeolite 결정 박막은 SEM 측정을 통해 구조와 표면 정렬 상태를 알고, photoluminescence 측정으로 양자점 특성의 발광 파장을 가짐을 알 수 있다.

  • PDF

Synthesis of zeolite A membranes on alumina support by hydrothermal reaction (수열반응에 의한 알루미나 지지체에 제올라이트 A 박막의 합성)

  • Ko, Tae-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.3
    • /
    • pp.95-101
    • /
    • 2007
  • The synthesis of NaA zeolite membrane on a porous alumina support from clear solution by using hydrothermal reaction was investigated. Effects of reaction temperature, reaction time and seeding for transformation of zeolite A membrane and powder which are produced in the reactor were monitored through X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The transformation process of producing Zeolite A membrane starts from the formation of the compact and continuous membrane on the surface of porous support from clear solution. The large Zeolite A poly-crystal was then farmed through the dissolution process. Finally, the process was advanced from sodalite to amorphous. In case of powder, sodalite is formed in the early stage of reaction because of surrounding space difference between membrane and powder crystal. Discrete surrounding space of powder crystal makes easy to transform to sodalite. From Zeolite A to amorphous through transformed product was rapidly advanced at high temperature while the membrane with somewhat low coverage was obtained at low temperature. A compact and continuous zeolite A membrane was synthesized at $120^{\circ}C$ in 12-hour period.

Synthesis and Characterization of Zeolite Using Water Treatment Sludge (정수슬러지를 이용한 제올라이트의 합성 및 특성연구)

  • Ko, Hyun Jin;Ko, Yong Sig
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.263-269
    • /
    • 2020
  • Zeolite was synthesized hydrothermally using the water-treatment sludge, and the effects of various synthesis parameters like reaction temperature, reaction time, and Na2O/SiO2 molar ratio on the crystallization of zeolite were investigated. Crystal structure, physical property, and thermal stability of zeolite crystals were characterized by X-ray powder diffraction, FTIR spectroscopy, BET nitrogen adsorption, and TGA measurements. The removal efficiencies of nitrogen in ammonia, heavy metal ions, and TOC were calculated to evaluate zeolite's adsorption capacity. The primary chemical composition of water-treatment sludge was 28.79% Al2O3 and 27.06% SiO2. The zeolites were synthesized by merely employing the water-treatment sludge as silica and alumina sources without additional chemicals. Zeolite crystals synthesized through the water-treatment sludge were confirmed as an A-type zeolite structure. Zeolite A had the highest crystallinity obtained from a gel with the molar composition 2.1Na2O-Al2O3-1.6SiO2-65H2O after 5 h at a temperature of 90 ℃. The specific surface area of zeolite obtained was 55 ㎡ g-1, which was higher than commercial zeolite A. The removal efficiency of nitrogen in ammonia was 68% after 3 h of reaction time, while the removal efficiencies of Pb2+ and Cd2+ ions were 99.1% and 99.3%, respectively. These results indicate active ion exchange between Pb2+ or Cd2+ ion and Na+ ion in the zeolite framework. The adsorption experiments on the different zeolite addition conditions were performed for 3 h with 300 ppm humic acid. Based on the results, TOC's highest efficiency was 83% when 5 g of zeolite was added.

Optimization of Synthesis Process for Zeolite 4A Using Statistical Experimental Design (통계적 실험계획법을 이용한 제올라이트 4A 합성 최적화)

  • Yun, Mi Hee;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.286-289
    • /
    • 2017
  • Synthesis of zeolite 4A was carried out to optimize the nanoparticle synthesis process using statistical experimental design method. The zeolite 4A was synthesized by controlling the concentration of the silicon precursor, sodium metasilicate (SMS), and characterized by XRD, SEM and nitrogen adsorption. In particular, the property of zeolite 4A can be determined by XRD analysis. Using the general factor analysis in the design of experiments, we analyzed main effects and interactions according to the reactor, reaction temperature and reaction time. The optimum reaction condition for the synthesis of zeolite 4A crystallinity was using an autoclave for 3 hours at $110^{\circ}C$. Furthermore, the optimal synthesis conditions of zeolite 4A with various crystallinity using Ludox as a silicon precursor were presented of what using both the surface and contour plot.