• Title/Summary/Keyword: Zenith angle

Search Result 89, Processing Time 0.03 seconds

The effects of clouds on enhancing surface solar irradiance (구름에 의한 지표 일사량의 증가)

  • Jung, Yeonjin;Cho, Hi Ku;Kim, Jhoon;Kim, Young Joon;Kim, Yun Mi
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.131-142
    • /
    • 2011
  • Spectral solar irradiances were observed using a visible and UV Multi-Filter Rotating Shadowband Radiometer on the rooftop of the Science Building at Yonsei University, Seoul ($37.57^{\circ}N$, $126.98^{\circ}E$, 86 m) during one year period in 2006. 1-min measurements of global(total) and diffuse solar irradiances over the solar zenith angle (SZA) ranges from $20^{\circ}$ to $70^{\circ}$ were used to examine the effects of clouds and total optical depth (TOD) on enhancing four solar irradiance components (broadband 395-955 nm, UV channel 304.5 nm, visible channel 495.2 nm, and infrared channel 869.2 nm) together with the sky camera images for the assessment of cloud conditions at the time of each measurement. The obtained clear-sky irradiance measurements were used for empirical model of clear-sky irradiance with the cosine of the solar zenith angle (SZA) as an independent variable. These developed models produce continuous estimates of global and diffuse solar irradiances for clear sky. Then, the clear-sky irradiances are used to estimate the effects of clouds and TOD on the enhancement of surface solar irradiance as a difference between the measured and the estimated clear-sky values. It was found that the enhancements occur at TODs less than 1.0 (i.e. transmissivity greater than 37%) when solar disk was not obscured or obscured by optically thin clouds. Although the TOD is less than 1.0, the probability of the occurrence for the enhancements shows 50~65% depending on four different solar radiation components with the low UV irradiance. The cumulus types such as stratoculmus and altoculumus were found to produce localized enhancement of broadband global solar irradiance of up to 36.0% at TOD of 0.43 under overcast skies (cloud cover 90%) when direct solar beam was unobstructed through the broken clouds. However, those same type clouds were found to attenuate up to 80% of the incoming global solar irradiance at TOD of about 7.0. The maximum global UV enhancement was only 3.8% which is much lower than those of other three solar components because of the light scattering efficiency of cloud drops. It was shown that the most of the enhancements occurred under cloud cover from 40 to 90%. The broadband global enhancement greater than 20% occurred for SZAs ranging from 28 to $62^{\circ}$. The broadband diffuse irradiance has been increased up to 467.8% (TOD 0.34) by clouds. In the case of channel 869.0 nm, the maximum diffuse enhancement was 609.5%. Thus, it is required to measure irradiance for various cloud conditions in order to obtain climatological values, to trace the differences among cloud types, and to eventually estimate the influence on solar irradiance by cloud characteristics.

Sensitivity Analysis of IR Aerosol Detection Algorithm (적외선 채널을 이용한 에어로솔 탐지의 경계값 및 민감도 분석)

  • Ha, Jong-Sung;Lee, Hyun-Jin;Kim, Jae-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.507-518
    • /
    • 2006
  • The radiation at $11{\mu}m$ absorbed more than at $12{\mu}m$ when aerosols is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The difference of the two channels provides an opportunity to detect aerosols such as Yellow Sand even with the presence of clouds and at night. However problems associated with this approach arise because the difference can be affected by various atmospheric and surface conditions. In this paper, we has analyzed how the threshold and sensitivity of the brightness temperature difference between two channel (BTD) vary with respect to the conditions in detail. The important finding is that the threshold value for the BTD distinguishing between aerosols and cloud is $0.8^{\circ}K$ with the US standard atmosphere, which is greater than the typical value of $0^{\circ}K$. The threshold and sensitivity studies for the BTD show that solar zenith angle, aerosols altitude, surface reflectivity, and atmospheric temperature profile marginally affect the BTD. However, satellite zenith angle, surface temperature along with emissivity, and vertical profile of water vapor are strongly influencing on the BTD, which is as much as of about 50%. These results strongly suggest that the aerosol retrieval with the BTD method must be cautious and the outcomes must be carefully calibrated with respect to the sources of the error.

Feasibility Assessment of Spectral Band Adjustment Factor of KOMPSAT-3 for Agriculture Remote Sensing (농업관측을 위한 KOMPSAT-3 위성의 Spectral Band Adjustment Factor 적용성 평가)

  • Ahn, Ho-yong;Kim, Kye-young;Lee, Kyung-do;Park, Chan-won;So, Kyu-ho;Na, Sang-il
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1369-1382
    • /
    • 2018
  • As the number of multispectral satellites increases, it is expected that it will be possible to acquire and use images for periodically. However, there is a problem of data discrepancy due to different overpass time, period and spatial resolution. In particular, the difference in band bandwidths became different reflectance even for images taken at the same time and affect uncertainty in the analysis of vegetation activity such as vegetation index. The purpose of this study is to estimate the band adjustment factor according to the difference of bandwidth with other multispectral satellites for the application of KOMPSAT-3 satellite in agriculture field. The Spectral band adjustment factor (SBAF) were calculated using the hyperspectral satellite images acquired in the desert area. As a result of applying SBAF to the main crop area, the vegetation index showed a high agreement rate of relative percentage difference within 3% except for the Hapcheon area where the zenith angle was 25. For the estimation of SBAF, this study used only one set of images, which did not consider season and solar zenith angle of SBAF variation. Therefore, long-term analysis is necessary to solve SBAF uncertainty in the future.

Comparison of Visualization Enhancement Techniques for Himawari-8 / AHI-based True Color Image Production (Himawari-8/AHI 기반 True color 영상 생산을 위한 시각화 향상 기법 비교 연구)

  • Han, Hyeon-Gyeong;Lee, Kyeong-Sang;Choi, Sungwon;Seo, Minji;Jin, Donghyun;Seong, Noh-hun;Jung, Daeseong;Kim, Honghee;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.483-489
    • /
    • 2019
  • True color images display colors similar to natural colors. This has the advantage that it is possible to monitor rapidly the complex earth atmosphere phenomenon and the change of the surface type. Currently, various organizations are producing true color images. In Korea, it is necessary to produce true color images by replacing generations with next generation weather satellites. Therefore, in this study, visual enhancement for true color image production was performed using Top of Atmosphere (TOA) data of Advanced Himawari Imager (AHI) sensor mounted on Himawari-8 satellite. In order to improve the visualization, we performed two methods of Nonlinear enhancement and Histogram equalization. As a result, Histogram equalization showed a strong bluish image in the region over $70^{\circ}$ Solar Zenith Angle (SZA) compared to the Nonlinear enhancement and nonlinear enhancement technique showed a reddish vegetation area.

Inter-comparison of Total Ozone from the Ground-based and Satellite Measurements at Seoul (지상과 위성으로부터 측정된 서울시 대기 중 오존 전량의 상호 비교)

  • Hong, Hyunkee;Kim, Jhoon;Lee, Hanlim;Cho, Hi Ku
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • Despite the extensive investigations to understand the difference between ground-based and space-borne measurements, there still exist differences in total ozone (TO) measured at those two different platforms. Comparisons were carried out for the first time between TO data obtaiend from the ground based Dobson and Brewer spectrophotometers, and the Ozone Monitoring Instrument (OMI) on board EOS-Aura satellite in a megacity site in Northeast Asia. The TO values retrieved by the OMI-DOAS (Differential optical absorption spectroscopy) algorithm tend to be lower than those measured by the ground based sensors in spring and summer as well as the low solar zenith angle condition. We found that such underestimation of the OMI-DOAS TO is caused by tropospheric ozone underestimated by the OMI-DOAS algorithm when tropospheric ozone are significantly enhanced.

A NON-SPHERICAL MODEL FOR THE HOT OXYGEN CORONA OF MARS

  • KIM YONG HA;SON SUJEONG;YI YU;KIM JHOON
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.1
    • /
    • pp.25-29
    • /
    • 2001
  • We have constructed a non-spherical model for the hot oxygen corona of Mars by including the effects of planetary rotation and diurnal variation of the Martian ionosphere. Exospheric oxygen densities are calculated by integrating ensemble of ballistic and escaping oxygen atoms from the exobase over the entire planet. The hot oxygen atoms are produced by dissociative recombination of $O^+_2$, the major ion in the Martian ionosphere. The densities of hot oxygen atoms at the exobase are estimated from electron densities which have been measured to vary with solar zenith angle. Our model shows that the density difference of hot oxygen atoms between noon and terminator is about two orders of magnitude near the exobase, but reduces abruptly around altitudes of 2000 km due to lateral transport. The diurnal variation of hot oxygen densities remains significant up to the altitude of 10000 km. The diurnal variation of the hot oxygen corona should thus be considered when the upcoming Nozomi measurements are analyzed. The non-spherical model of the hot oxy-gen corona may contribute to building sophisticate solar wind interaction models and thus result in more accurate escaping rate of oxygens from Mars.

  • PDF

Energy spectrum of particles arriving at the ground and S(800) determination by Monte Carlo simulation for Telescope Array

  • Kim, Ji-Hee;Roh, Soon-Young;Ryu, Dong-Su;Kang, Hye-Sung;Kasahara, Katuaki;Kido, Eiji;Taketa, Akimichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.58.1-58.1
    • /
    • 2010
  • Telescope Array (TA) experiment in Utah, USA, observes ultrahigh-energy cosmic rays (UHECRs); UHECRs refer cosmic rays with energy above $10^{18}eV$. Using COSMOS and CORSIKA, we have produced a library of over 1000 thinned extensive air shower (EAS) simulations with the primary energies ranging from $10^{18.5}eV$ to $10^{20.25}eV$ and the zenith angle of primary cosmic ray particle from $0^{\circ}$ to $45^{\circ}$. Here, we present the energy spectrum of particles arriving at the ground. We have also calculated the detector response evaluated using GEANT4 simulations. Here, we discuss S(800), i.e. the signal at a distance of 800 m from the shower core, as the primary energy estimator.

  • PDF

The Improvement of Infrared Brightness Temperature Difference Method for Detecting Yellow Sand Dust

  • Ha, Jong-Sung;Kim, Jae-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.149-152
    • /
    • 2007
  • The detection of yellow sand dust using satellite has been utilized from various bands from ultraviolet to infrared channels. Among them, Infrared channels have an advantage of detecting aerosols over high reflecting surface as well as during nighttime. Especially, brightness temperature difference between 11 and 12{\mu}m(BTD) was often used to distinguish between water cloud and yellow sand, because Ice and liquid water particles preferentially absorb longer wavelengths while aerosol particles preferentially absorb shorter wavelengths. We have found that the BTD significantly depends on surface temperature, emissivity, and zenith angle and thereby the threshold of BTD. In order to overcome these problems, we have constructed the background brightness temperature threshold of BTD and then subtracted it from BTD. Along with this, we utilized high temporal coverage of geostationary satellite, MTSAT-1R, to verify the reliability of the retrieved signal in conjunction with forecasted wind information. The statistical score test illustrated that this newly developed algorithm showed a promising result for detecting mineral dust by reducing the errors in the current BTD method.

  • PDF

Updated Comparison Study of Extensive Air Shower Simulations with COSMOS and CORSIKA

  • Kim, Ji-Hee;Roh, Soon-Young;Ryu, Dong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.128.2-128.2
    • /
    • 2011
  • Experiments to study high-energy cosmic rays (CRs) employ Monte Carlo codes for extensive air shower (EAS) simulations to figure out the properties of CRs. COSMOS and CORSIKA among EAS simulation codes are currently being used to analyze the data of the Telescope Array experiment. We have generated a library of about 10,000 simulated EASs with the primary energy ranging from $10^{18.5}eV$ to $10^{20}eV$ and the zenith angle of primary particles ranging from 0 to 45 degree for proton and iron primaries. We have compared the results predicted by CORSIKA and COSMOS under the same condition. In this talk, we show the differences in the energy spectra at the ground, the longitudinal shower profile as a function of atmospheric depth, the Calorimetric energy, and the Xmax distribution. We also discuss the lateral distribution function obtained from GEANT4 simulations which is being used to measure the detector response.

  • PDF

A Study on Prediction Method of Sky Luminance Distributions for CIE Overcast Sky and CIE Clear Sky (CIE 표준 담천공과 청천공 모델의 천공 휘도분포 예측 방법에 관한 연구)

  • Kim, Chul-Ho;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.33-43
    • /
    • 2016
  • Daylight is an important factor which influences building energy efficiency and visual comfort for occupants. It is important to predict precise sky luminance at the early stages of design to reduce light energy in the building. This study predicted sky luminance distributions of standard sky model(CIE overcast sky, CIE clear sky) that was provided from the CIE(Commission internationale de $l^{\prime}{\acute{e}}clairage$). Afterward, result of sky luminance was compared and verified with simulation value of Radiance program. From the CIE overcast sky, zenith and horizon ratio is about 3:1. From the CIE clear sky, luminance value gets most high value around the sun. On the other hand, luminance value is the lowest in the opposite direction of the sun when angle is $90^{\circ}$ between the sun and sky element. As a result of comparing the calculation results with Radiance program, sky luminance prediction error rate is 0.4~1.3% when it is CIE overcast sky. Also, sky luminance prediction error rate is 0.3~1.5% when it is CIE clear sky. When compared with the results of radiance simulation, it was evaluated as fairly accurate.