• Title/Summary/Keyword: ZVS turn-on

Search Result 106, Processing Time 0.023 seconds

High Ratio Bidirectional DC-DC Converter with a Synchronous Rectification H-Bridge for Hybrid Energy Sources Electric Vehicles

  • Zhang, Yun;Gao, Yongping;Li, Jing;Sumner, Mark;Wang, Ping;Zhou, Lei
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2035-2044
    • /
    • 2016
  • In order to match the voltages between high voltage battery stacks and low voltage super-capacitors with a high conversion efficiency in hybrid energy sources electric vehicles (HESEVs), a high ratio bidirectional DC-DC converter with a synchronous rectification H-Bridge is proposed in this paper. The principles of high ratio step-down and step-up operations are analyzed. In terms of the bidirectional characteristic of the H-Bridge, the bidirectional synchronous rectification (SR) operation is presented without any extra hardware. Then the SR power switches can achieve zero voltage switching (ZVS) turn-on and turn-off during dead time, and the power conversion efficiency is improved compared to that of the diode rectification (DR) operation, as well as the utilization of power switches. Experimental results show that the proposed converter can operate bidirectionally in the wide ratio range of 3~10, when the low voltage continuously varies between 15V and 50V. The maximum efficiencies are 94.1% in the Buck mode, and 93.6% in the Boost mode. In addition, the corresponding largest efficiency variations between SR and DR operations are 4.8% and 3.4%. This converter is suitable for use as a power interface between the battery stacks and super-capacitors in HESEVs.

High-Frequency Flyback Transformer Linked PWM Power Conditioner with An Active Switched Capacitor Snubber

  • Mun, Sang-Pil;Kim, Soo-Wook;Joo, Seok-Min;Park, Young-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.7
    • /
    • pp.7-15
    • /
    • 2008
  • A single active capacitor snubber-assisted soft-switching sinewave pulse modulation utility-interactive power conditioner with a three-winding flyback high frequency transformer link and a bidirectional active power switch in its secondary side has been proposed. With the aid of the switched-capacitor quasi-resonant snubber cell, the high frequency switching devices in the primary side of the proposed DC-to-AC sinewave power inverter can be turned-off with ZVS commutation. In addition to this, the proposed power conditioner in the DCM can effectively take the advantages of ZCS turn-on commutation. Its output port is connected directly to the utility AC power source grid. At the end, the prototype of the proposed HF-UPC is built and tested in experiment. Its power conversion conditioning and processing circuit with a high frequency flyback transformer link is verified and the output sinewave current is qualified in accordance with the power quality guidelines of the utility AC interactive power systems.

A New LLC Resonant Converter with Multiple Outputs for High Efficiency and Low Cost PDP Power Module

  • Kim, Chong-Eun;Yi, Kang-Hyun;Moon, Gun-Woo;Lee, Buem-Joo;Kim, Sang-Man
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.439-441
    • /
    • 2005
  • A new LLC resonant converter with multiple outputs is proposed for high efficiency and low cost plasma display panel (PDP) power module. In the proposed converter, ZVS turn-on of the primary MOSFETs and ZCS nun-off of the secondary diodes are guaranteed in the overall input voltage and output load range. Moreover, the primary MOSFETs and the secondary diodes have low voltage stresses clamped to input and the output voltage, respectively. Therefore, the proposed converter shows the high efficiency due to the minimized switching and conduction losses. In addition, by employing the transformer, which has the two and more secondary side, the proposed converter can have multiple outputs and they show the great cross-regulation characteristics. As a result, the proposed converter can be implemented with low cost and compact size. The 500W prototype is implemented, which integrates the sustaining and addressing power supplies of PDP power module. The maximum efficiency is 96.8% and the respective output voltages are well regulated. Therefore, the proposed converter is suitable for high efficiency and low cost PDP power module.

  • PDF

A Study on the LCC Type High Frequency DC/DC Converter for Contactless Power Supply System (비접촉 전원장치에 적용한 LCC형 고주파 공진 DC/DC 컨버터에 관한 연구)

  • Kim, Dong-Hee;Hwang, Gye-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.55-64
    • /
    • 2007
  • This paper represents characteristics and design example of series loaded LCC type high frequency resonant DC-DC converter with variable parallel capacitor in the secondary side of inductive power transformer. In this converter, ZVS(zero voltage switching) technique is applied to reduce turn-off switching losses, and the applied converter used the PFM switching pattern to control output voltage. The operating characteristics of the proposed converter is analyzed using nomalized parameter such as switching frequency and load factor with varing the secondary parallel resonant capacitor. The results of analysis show the operating characteristics and design method of the proposed converter using characteristic values. And the proposed converter can be applied for the contactless power supply with linear transfer system such as dean room facilities of semiconductor and Flat Panel Display.

Improved AC/DC PFC ZVT Boost Converter (개선된 AC/DC PFC ZVT Boost 컨버터)

  • Ryu, Jong-Gyu;Kim, Yong;Bae, Jin-Yong;Lee, Eun-Young;Cho, Kyu-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.62-69
    • /
    • 2005
  • This paper presents the improved AC/DC PFC(Power-Factor-Correction) ZVT(Zero-Voltage-Transition) Boost Converter. The conventional AC/DC PFC ZVT Boost Converter minimizes the switching loss of the main switch within all of the load range. That is because AC/DC PFC ZVT Boost converter makes the main switch and the auxiliary switch turn on simultaneously so that it makes ZVS (Zero-Voltage-Switching) possible at the light load. However, it has two problems that ale large loss of the auxiliary switch and the increasing of the reverse current of the main switch. Therefore this research presents high efficiency to reduce the current stress of the auxiliary switch and the reverse current of main switch by adding a diode to the conventional ZVT converter. The prototype of 640[W], 100[kHz] system using MOSFET is implemented for this experimental verification.

PWM-PFC Step-Up Converter For Novel Loss-Less Snubber (새로운 무손실 스너버에 의한 PWM-PFC 스텝-업 컨버터)

  • Kwak Dong-Kurl;Lee Bong-Seob;Jung Do-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.1 s.307
    • /
    • pp.45-52
    • /
    • 2006
  • In this paper, authors propose a step-up converter of pulse width modulation (PWM) and power factor correction (PFC) by using a novel loss-less snubber. The proposed converter for a discontinuous conduction mode (DCM) eliminates the complicated circuit control requirement and reduces the size of components. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of ac input voltage under the constant duty cycle switching. Thereupon, the input power factor is nearly unity and the control method is simple. In the general DCM converters, the switching devices are fumed-on with the zero current switching (ZCS), and the switching devices must be switched-off at a maximum reactor current. To achieve a soft switching (ZCS and ZVS) of the switching turn-off, the proposed converter is constructed by using a new loss-less snubber which is operated with a partial resonant circuit. The result is that the switching loss is very low and the efficiency of converter is high. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.