• Title/Summary/Keyword: ZVS operation

Search Result 241, Processing Time 0.028 seconds

Design of Power Supply for Green PC using Low Voltage High Current LLC Resonant Converter (저전압 대전류 LLC 공진형 컨버터를 이용한 그린 PC용 전원공급장치 설계)

  • Yoo, Young-Do;Kim, In-Dong;Nho, Eui-Cheol;Ryu, Myung-Hyo;Baek, Ju-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.211-219
    • /
    • 2014
  • This paper proposes a low voltage high current LLC resonant converter for Green PC. Green PC is composed of a lot of blade PCs, and it is a centralized system to manage them in computer center. Green PC should require that its power supplies have several characteristics such as low output voltage, high output current, and high power conversion efficiency. Conventional PSFB (Phase Shift Full Bridge) converter is usually used as DC/DC converter for computer power supply because it has high power conversion efficiency thanks to ZVS (Zero Voltage Switching) operation under middle and high load conditions. However, this converter has some problems such as large switching noise and limitation of ZVS operation under light load condition. In order to improve the performance of power supply for Green PC, a new power supply using popular high efficiency LLC resonant converter for low voltage and high current application is proposed in this paper. The proposed power supply has ZVS capability over the entire load range, thus resulting in good efficiency and high switching frequency. Experimental results verify the performance of the proposed power supply for Green PC using 2[kW] (19[V], 105[A]) rated prototype converter.

A Study on the Characteristics Analysis of LLC AC to DC High Frequency Resonant Converter capable of ZVZCS (ZVZCS가 가능한 LLC AC to DC 고주파 공진 컨버터의 특성 해석에 관한 연구)

  • Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.741-749
    • /
    • 2021
  • This paper presents the current-fed type LLC AC to DC high frequency resonant converter capable of ZVZCS(Zero-Voltage and Zero-Current Switching). The current-fed type LLC AC to DC high frequency resonant converter proposed in this paper could operate not only in ZVS(Zero-Voltage Switching) operation by connecting the resonant capacitors(C1, C2) in parallel across the switching devices but also in ZCS(Zero-Current Switching) operation of the secondary diode. The ZVS and ZCS operations can reduce the turn-on loss of the switching devices and the turn-off loss of the secondary diodes, respectively. The circuit analysis of current-fed type LLC AC to DC high frequency resonant converter proposed in this paper is addressed generally by adopting the normalized parameters. The operating characteristics of proposed LLC AC to DC high frequency resonant converter were also evaluated by using the normalized control parameters such as the normalized control frequency(μ), the normalized load resistor(λ) and so on. Based on the characteristic values through the characteristics of evaluation, an example of the design method of proposed LLC AC to DC high frequency resonant converter is suggested, and the validity of the theoretical analysis is confirmed using the experimental results and PSIM simulation.

An Improved ZVS Partial Series Resonant DC/DC Converter with Low Conduction Losses (저 도통손실 특성을 갖는 향상된 영전압 부분 직렬 공진형 DC/DC 컨버터)

  • 김의성;이동윤;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.386-393
    • /
    • 2000
  • This paper presents an improved ZVS partial series resonant DC/DC converter (PSRC) with low conduction losses, suitable for high power and high frequency applications. The proposed PSRC have advantages of zero-voltage-switching (ZVS) of main switches for entire load ranges low conduction losses of main switches by decreasing current stresses. Also the reduction of the effective duty cycle is not occurred during the resonant period of the main circuit because the auxiliary circuit of the proposed converter is placed out of the main power path. The auxiliary circuit is composed with passive components, which are an inductor, two capacitors, two diodes, and a saturable inductor. An improved ZVS PSRC has so much characteristics with respect to the overall system efficiency and to the reduction of current stresses. The operation principles of the proposed converter are explained in detail and the various simulated and experimental results show the validity of the proposed converter.

  • PDF

ZVS-PWM Boost Chopper-Fed DC-DC Converter with Load-Side Auxiliary Edge Resonant Snubber and Its Performance Evaluations

  • Ogura, Koki;Chandhaket, Srawouth;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.46-55
    • /
    • 2004
  • This paper presents a high-frequency ZVS-PWM boost chopper-fed DC-DC converter with a single active auxiliary edge resonant snubber in the load-side which can be designed for power conditioners such as solar photovoltaic generation, fuel cell generation, battery and super capacitor energy storages. Its principle operation in steady-state is described in addition to a prototype setup. The experimental results of ZVS-PWM boost chopper-fed DC-DC converter proposed here, are evaluated and verified with a practical design model in terms of its switching voltage and current waveforms, the switching v-i trajectory, the temperature performance of IGBT module, the actual power conversion efficiency and the EMI of radiated and conducted emissions. And then discussed and compared with the hard switching scheme from an experimental point of view. Finally, this paper proposes a practical method to suppress parasitic oscillation due to the active auxiliary resonant switch at ZCS turn off mode transition with the aid of an additional lossless clamping diode loop, and reduced the EMI conducted emission in this paper.

A Simple Structure of Zero-Voltage Switching (ZVS) and Zero-Current Switching (ZCS) Buck Converter with Coupled Inductor

  • Wei, Xinxin;Luo, Ciyong;Nan, Hang;Wang, Yinghao
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1480-1488
    • /
    • 2015
  • In this paper, a revolutionary buck converter is proposed with soft-switching technology, which is realized by a coupled inductor. Both zero-voltage switching (ZVS) of main switch and zero-current switching (ZCS) of freewheeling diode are achieved at turn on and turn off without using any auxiliary circuits by the resonance between the parasitic capacitor and the coupled inductor. Furthermore, the peak voltages of the main switch and the peak current of the freewheeling diode are significantly reduced by the coupled inductor. As a result, the proposed converter has the advantages of simple circuit, convenient control, low consumption and so on. The detailed operation principles and steady-state analysis of the proposed ZVS-ZCS buck converter are presented, and detailed power loss analysis and some simulation results are also included. Finally, experimental results based on a 200-W prototype are provided to verify the theory and design of the proposed converter.

A Novel Zero-Voltage-Switching Push-Pull Forward Converter with a Parallel Resonant Network

  • Cai, Chunwei;Shi, Chunyu;Guo, Yuxing;Yang, Zi;Meng, Fangang
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.20-30
    • /
    • 2017
  • A novel zero-voltage-switching (ZVS) push-pull forward converter with a parallel resonant network is presented in this paper. The novel topology can provide a releasing loop for the energy storage in a leakage inductor for the duration of the power switching by the resonant capacitors paralleled with the primary windings of the transformer. Then the transformer leakage inductor is utilized to be resonant with the parallel capacitor, and the ZVS operation is achieved. This converter exhibits many advantages such as lower duty-cycle losses, limited peak voltage across the rectifier diodes and a higher efficiency. Furthermore, the operating principles and key problems of the converter design are analyzed in detail, and the ZVS conditions are derived. A 500W experimental converter prototype has been built to verify the effectiveness of the proposed converter, and its maximum efficiency reaches 94.8%.

DUAL DUTY CYCLE CONTROLLED SOFT-SWITCHING HIGH FREQUENCY INVERTER USING AUXILIARY REVERSE BLOCKING SWITCHED RESONANT CAPACITOR

  • Bishwajit, Saha;Suh, Ki-Young;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.129-131
    • /
    • 2006
  • This paper presents a new ZVS-PWM high frequency inverter. The ZVS operation is achieved in the whole load range by using a simple auxiliary reverse blocking switch in parallel with series resonant capacitor. The operating principle and the operating characteristics of the new high frequency circuit treated here are illustrated and evaluated on the basis of simulation results. It was examined that the complete soft switching operation can be achieved even for low power setting ranges by introducing the high frequency dual duty cycle control scheme. In the proposed high frequency inverter treated here, the dual mode pulse modulation control strategy of the asymmetrical PWM in the higher power setting ranges and the lower power setting ones, the output power of this high frequency inverter could introduce in order to extend soft switching operation ranges. Dual duty cycle is used to provide a wide range of output power regulation that is important in many high frequency inverter applications. It is more suitable for induction heating applications the operation and control principle of the proposed high frequency inverter are described and verified through simulated results.

  • PDF

A study of AC-DC PFC ZVS Interleaved Boost Converter (AC-DC PFC ZVS 인터리브 승압형 컨버터에 관한 연구)

  • Lee, Sung-Ho;Kim, Yong;Seo, Sang-Hwa;Kwon, Soon-Do;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1224-1225
    • /
    • 2011
  • This paper proposes a novel soft-switching interleaved boost converter composed of two shunted elementary PFC boost conversion units and an auxiliary inductor. This converter is able to turn on both the active power switches at zero voltage to reduce their switching losses and evidently raise the conversion efficiency and power factor. Since the two parallel-operated elementary boost units are identical, operation analysis and design for the converter module becomes quite simple. A laboratory test circuit is built, and the circuit operation shows satisfactory agreement with the theoretical analysis. The performance of the proposed PFC rectifier was evaluated on an experimental 300[W] PFC prototype.

  • PDF

Design of a 49kW high efficiency bidirectional DC-DC converter for charge and discharge of high voltage battery in HEV (하이브리드 자동차 고전압 배터리 충, 방전을 위한 49kW급 고효율 양방향 DC/DC 컨버터 설계)

  • Yang, Jin-Young;Yoon, Chang-Woo;Park, Sung-Sik;Choi, Se-Wan;Park, Rae-Kwan;Chang, Seo-Geon
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.21-23
    • /
    • 2007
  • In this paper a high efficiency bi-directional DC-DC converter for hybrid vehicles is proposed. The proposed converter a three-phase half-bridge interleaved ZVS converter, is designed to have high efficiency in the main operation range. The component ratings are calculated, the actual devices are selected, and the efficiency analysis has been performed to determine optimal ZVS range. The input and output current ripples are significantly reduced due to the interleaved operation. The dual loop control for the interleaved three-phase converter is also presented. To confirm the proposed convert ter, The simulation and experimental results are presented.

  • PDF

A Novel Battery Charge/Discharge System with Zero Voltage Discharge Function (영전압 방전 기능을 갖는 새로운 배터리 충방전시스템)

  • Nguyen, Quang Manh;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.169-170
    • /
    • 2013
  • One important test for formation and grading of the lithium-ion battery is to confirm the performance of the battery while discharging battery down to zero volts. In this paper, a novel charge/discharge converter with zero-voltage discharge function is proposed. The proposed converter is able to discharge the battery until the voltage reaches to zero volts. The phase-shifted full bridge method is used to charge the battery and the current-fed push-pull method with bidirectional switches is used for the discharge. The ZVS turn-on is achieved in the charge operation and the ZVS turn-off in the discharge operation. The performance of the system is verified by the experiments using lithium-ion batteries.

  • PDF