• Title/Summary/Keyword: ZVS operation

Search Result 241, Processing Time 0.029 seconds

ZVS Operating Range Extension Method for High-Efficient High Frequency Linked ZVS-PWM DC-DC Power Converter

  • Sato S.;Moisseev S.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.227-230
    • /
    • 2003
  • In this paper, a full bridge edge-resonant zero voltage mode based soft-switching PWM DC-DC power converter with a high frequency center tapped transformer link stage is presented from a practical point of view. The power MOSFETS operating as synchronous rectifier devices are implemented in the rectifier center tapped stage to reduce conduction power losses and also to extend the transformer primary side power MOSFETS ZVS commutation area from the rated to zero-load without a requirement of a magnetizing current. The steady-state operation of this phase-shift PWM controlled power converter is described in comparison with a conventional ZVS phase-shift PWM DC-DC converter using the diodes rectifier. Moreover, the experimental results of the switching power losses analysis are evaluated and discussed in this paper. The practical effectiveness of the ZVS phase-shift PWM DC-DC power converter treated here is actually proved by using 2.5kW-32kHz breadboard circuit. An actual efficiency of this converter is estimated in experiment and is achieved as 97$\%$ at maximum.

  • PDF

A Study on the ZVS-CV Converter Using Thin-Film Inductor (박막 인덕터를 이용한 ZVS-CV 컨버터에 관한 연구)

  • Im, Sang-Un;Kim, Young-Jae;Kim, Hee-Jun;Kim, Hyoung-June
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2522-2525
    • /
    • 1999
  • Buck converter is considered to be one of the most widely used DC-DC converters due to its simple structure and high reliable performance. However, when it be combined with thin-film inductor, its own low inductance requires higher switching frequency in order to maintain optimum output ripple voltage and thus gives rise to extra switching losses. In view to overcoming such a technical in-convenience, soft switching fashion is suggested such as zero-voltage-switching of which an well known example is a Zero-Voltage-Switching clamp voltage(ZVS-CV) converter for which low inductance is imperatively required for ZVS operation. In order to support our suggestion, a 1W of ZVS-CV buck converter( Vo=3.3V, Iomax=0.3A, fs= 1.2MHz) is built by use of thin-film inductor, and then tested for comparing the measured efficiency between ours and conventional one. As the our results. the efficiency is improved about 2% at full load by the application of our concept.

  • PDF

A Study on the ZVS-SEPP Type High Frequency Resonant Inverter with induction Heating Jar(I) (IH-Jar용 ZVS-SEPP 고주파 공진 인버터에 관한 연구(I))

  • Kim, Jong-Hae;Kim, Dong-Hee;No, Chae-Gyan;Bae, Young-Ho;Baek, Seung-Myun;Moon, Chang-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.69-74
    • /
    • 1999
  • This paper presents about a example of circuit design and characteristics of proposed circuit in the case of adopted the high frequency resonant Inverter of SEPP type using ZVS(Zero-Voltage-Switching) to the Induction heating load. The soft switching technology known as ZVS is used to reduce turn on and off loss at switching. Also, this paper realizes quantitative circuit analysis which has change the equivalent of Induction heating load to the electric circuit. According to the calculated characteristics value, a method of the circuit designs and operation characteristics of the Inverter is proposed. In addition, this paper proves the propriety of theoretical analysis through the experiment. The proposed inverter shows it can be practically used as power source system for induction heating Jar etc.

  • PDF

Cost Effective Quasi-Resonant Soft Switching PWM High Frequency Inverter With Minimum Circuit Components for Consumer IH Cooker and Steamer

  • Sugimura, Hisayuki;Eid, Ahmad-M.;Nakaoka, M.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.134-139
    • /
    • 2005
  • This paper presents a cost effective quasi-resonant soft-switching PWM high frequency inverter with minimum circuit components. This inverter can achieve wider soft commutation, simpler power circuit configuration, smaller volumetric size, lower cost and wider power regulation range, higher-efficiency as compared with single ended quasi-resonant ZVS-PFM inverter and active voltage clamped quasi-resonant ZVS-PWM inverter. The operation principle of the proposed inverter is described on the basis of the simulation and experimental results, together with its operating performances in steady state. The operating performances of this unique proposed high frequency inverter based on ZVS and ZCS arms-related soft commutation principle is evaluated and discussed as compared with the active voltage-clamped ZVS-PWM inverter and a conventional single-ended ZVS-PFM inverter. The practical effectiveness of a novel type quasi-resonant soft-switching PWM high frequency inverter using IGBT is actually proved for consumer induction heated appliances as rice cooker, hot water producer, steamer and super heated steamer. The extended bidirectional circuit topology of quasi-resonant PWM high frequency inverter with minimum circuit components is demonstrated, which operate as the direct frequency changer.

  • PDF

Modeling and Design of Zero-Voltage-Switching Controller for Wireless Power Transfer Systems Based on Closed-Loop Dominant Pole

  • Chen, Cheng;Zhou, Hong;Deng, Qijun;Hu, Wenshan;Yu, Yanjuan;Lu, Xiaoqing;Lai, Jingang
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1235-1247
    • /
    • 2019
  • Zero-Voltage-Switching (ZVS) operation for a Wireless Power Transfer (WPT) system can be achieved by designing a ZVS controller. However, the performance of the controller in some industrial applications needs to be designed tightly. This paper introduces a ZVS controller design method for WPT systems. The parameters of the controller are designed according to the desired performance based on the closed loop dominant pole placement method. To describe the dynamic characteristics of the system ZVS angle, a nonlinear dynamic model is deduced and linearized using the small signal linearization method. By analyzing the zero-pole distribution, a low-order equivalent model that facilitates the controller design is obtained. The parameters of the controller are designed by calculating the time constant of the closed-loop dominant poles. A prototype of a WPT system with the designed controller and a five-stage multistage series variable capacitor (MSVC) is built and tested to verify the performance of the controller. The recorded response curves and waveforms show that the designed controller can maintain the ZVS angle at the reference angle with satisfactory control performance.

A Comparative Study of Operation characteristics of Active Clamp Forward Converter Based on Loss Analysis (손실해석을 통한 능동 클램프 포워드 컨버터의 동작 특성비교)

  • Oh, Deog-Jin;Kim, Hee-Jun;Kim, Chang-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2039-2041
    • /
    • 1998
  • In this paper, Operation characteristics of the active clamp(ACL) zero-voltage-switching(ZVS) forward converter(FC) and active clamp hard- switching(HS) forward converter are compared with respect to loss analysis. The losses of semiconductor (including conduction losses and switching losses), transformer(containing the core loss and copper loss) and parasitic element of passive element (capacitor, inductor) are measured and compared for each type. For an experiment we have built 50W ACL ZVS-FC and ACL HS-FC, in which the switching frequency is 200kHz, and test it. The experimental results show that both types of operation have nearly same characteristics.

  • PDF

Optimized Operation of Dual-Active-Bridge DC-DC Converters in the Soft-Switching Area with Triple-Phase-Shift Control at Light Loads

  • Jiang, Li;Sun, Yao;Su, Mei;Wang, Hui;Dan, Hanbing
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.45-55
    • /
    • 2018
  • It is usually difficult for dual-active-bridge (DAB) dc-dc converters to operate efficiently at light loads. This paper presents an in-depth analysis of a DAB with triple-phase-shift (TPS) control under the light load condition to overcome this problem. A kind of operating mode which is suitable for light load operation is analyzed in this paper. First, an analysis of the zero-voltage-switching (ZVS) constraints for the DAB converter has been carried out and a reasonable dead-band setting method has been proposed. Secondly, the basic operating characteristics of the converter are analyzed. Third, under the condition of satisfying the ZVS constraints, both the reactive power and the root mean square (RMS) value of the current are simultaneously minimized and a particle swarm optimization (PSO) algorithm is employed to analyze and solve this optimization problem. Lastly, both simulations and experiments are carried out to verify the effectiveness of the proposed method. The experimental results show that the converter can effectively achieve ZVS and improved efficiency.

High-efficiency Double-ended Active Clamp ZVS Forward Converter (고효율 더블 엔디드 능동 클램프 영전압 스위칭 포워드 컨버터)

  • Kim Chong-Eun;Kang Jeong-il;Han Sang-Kyoo;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.124-128
    • /
    • 2001
  • In this paper, a high-efficiency double-ended active clamp ZVS forward converter is proposed. This converter can be used in compact size AC/DC converter applications such as a notebook adapter. The principles of operation are described and the zero voltage switching characteristics are analyzed. High efficiency of this converter is verified by the experimental results.

  • PDF

Zero-Voltage-Switching Boost Converter Using a Coupled Inductor

  • Do, Hyun-Lark
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.16-20
    • /
    • 2011
  • This paper presents a zero-voltage-switching (ZVS) boost converter using a coupled inductor. It utilizes an additional winding to the boost inductor and an auxiliary diode. The ZVS characteristic of the proposed converter reduces the switching losses of the active power switches and raises the power conversion efficiency. The principle of operation and a system analysis are presented. The theoretical analysis and performance of the proposed converter were verified with a 100W experimental prototype operating at a 107 kHz switching frequency.

A New-Half Bridge Converter without DC offset of magnetizing current

  • Cho, Kyu-Min;Oh, Won-Sik;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.147-149
    • /
    • 2007
  • A new half bridge converter without DC offset of magnetizing current is proposed. The proposed half bridge converter can realize no DC offset of magnetizing current as well as no circulating current, and guarantee ZVS operation. Therefore it has high efficiency and high power density, especially in wide input range. The operational principle, DC conversion ratio and ZVS analysis are presented. Experimental results demonstrate that the proposed converter can achieve a significant improvement in the efficiency.

  • PDF