• Title/Summary/Keyword: ZOOPLANKTON

Search Result 424, Processing Time 0.024 seconds

Detecting response patterns of zooplankton to environmental parameters in shallow freshwater wetlands: discovery of the role of macrophytes as microhabitat for epiphytic zooplankton

  • Choi, Jong-Yun;Kim, Seong-Ki;Jeng, Kwang-Seuk;Joo, Gea-Jae
    • Journal of Ecology and Environment
    • /
    • v.38 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • Freshwater macrophytes improve the structural heterogeneity of microhabitats in water, often providing an important habitat for zooplankton. Some studies have focused on the overall influence of macrophytes on zooplankton, but the effects of macrophyte in relation to different habitat characteristics of zooplankton (e.g., epiphytic and pelagic) have not been intensively studied. We hypothesized that different habitat structures (i.e., macrophyte habitat) would strongly affect zooplankton distribution. We investigated zooplankton density and diversity, macrophyte characteristics (dry weight and species number), and environmental parameters in 40 shallow wetlands in South Korea. Patterns in the data were analyzed using a self-organizing map (SOM), which extracts information through competitive and adaptive properties. A total of 20 variables (11 environmental parameters and 9 zooplankton groups) were patterned onto the SOM. Based on a U-matrix, 3 clusters were identified from the model. Zooplankton assemblages were positively related to macrophyte characteristics (i.e., dry weight and species number). In particular, epiphytic species (i.e., epiphytic rotifers and cladocerans) exhibited a clear relationship with macrophyte characteristics, while large biomass and greater numbers of macrophyte species supported high zooplankton assemblages. Consequently, habitat heterogeneity in the macrophyte bed was recognized as an important factor to determine zooplankton distribution, particularly in epiphytic species. The results indicate that macrophytes are critical for heterogeneity in lentic freshwater ecosystems, and the inclusion of diverse plant species in wetland construction or restoration schemes is expected to generate ecologically healthy food webs.

Observation and Evaluation of Zooplankton Community Characteristics in the Petite Ponds (Dumbeong) for Irrigation: A Case Study in Goseong Region of South Korea (남부지역 소형 관개용 못들에서의(둠벙) 동물플랑크톤 군집특성 조사 및 평가)

  • Kim, Hang-Ah;Choi, Jong-Yoon;Kim, Seong-Gi;Do, Yuno;Joo, Gea-Jae;Kim, Dong-Kyun;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.490-498
    • /
    • 2012
  • This study demonstrates the investigation of zooplankton communities (e.g. rotifers, cladocerans and copepods) and environmentally related driving factors (e.g. elevation, area size, water depth, types of dike construction, and bottom substrates). We hypothesized that zooplankton community structure and composition would be influenced by ambient driving forces in different scales of the irrigation ponds (Dumbeong). A total of 66 zooplankton species/groups (56 rotifers, 9 cladocerans, 1 copepods) were found and identified at 45 Dumbeong of Goseong region (i.e. Goseong-gun) in 2011. The rotifers occupied 84.9% of the total zooplankton abundance. We could categorize a clear separation of zooplankton communities into 4 different patterns based on cluster analysis. Zooplankton diversities in Dumbeongs were lower than those in natural ponds or wetlands. In addition, community structure of zooplankton was also simpler and had a broken stick distribution based on SHE analysis. Species composition in each Dumbeong was not significantly discriminated each other. The result of canonical correspondence analysis (CCA) pinpointed that significant influential variables upon zooplankton community were dissolved oxygen percent saturation, pH, and Dumbeong's material. This study indicated that morphological type of the Dumbeong and its water quality could determine the community structure of zooplankton. Furthermore, the connectivity between ambient habitats and materials could be necessary to be rigorously considered in respect to producing the Dumbeongs to subsidize alternative habitats for wetland ecosystem in freshwater landscape.

Grazing on Bacteria and Algae by Metazoans in the Lake-river Ecosystem (River Spree, Germany)

  • Kim, Hyun-Woo;Joo, Gea-Jae;Walz, Norbert
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.111-115
    • /
    • 2008
  • Direct effects of zooplankton grazing activities on the natural assemblage of bacterioplankton and algae were evaluated at monthly intervals, from June to October of 2000, in the middle part of the River Spree, Germany. We quantified bacterioplankton, algae, zooplankton abundance and measured carbon ingestion rates (CIRs) by zooplankton according to two zooplankton size classes: (i) micro zooplankton (MICZ), ranging in size from 30 to $150{\mu}m$ and including rotifers and nauplii, excluding protozoans and (ii) macrozooplankton (MACZ), larger than $150{\mu}m$ and including cladocerans and copepods. CIRs were measured using natural bacterial and algae communities in the zooplankton density manipulation experiments. Algae biomass (average${\pm}$SD: $377{\pm}306{\mu}gC\;L^{-1}$, n=5) was always higher than bacterial biomass ($36.7{\pm}9.9{\mu}gC\;L^{-1}$, n=5). Total zooplankton biomass varied from 19.8 to $137{\mu}gC\;L^{-1}$. Total mean biomass of zooplankton was $59.9{\pm}52.5{\mu}gC\;L^{-1}$ (average${\pm}$SD, n=5). Average MICZ biomass ($40.2{\pm}47.6{\mu}gC\;L^{-1}$ n=5) was nearly twofold higher than MACZ biomass ($19.6{\pm}20.6{\mu}gC\;L^{-1}$ n=5). Total zooplankton CIRs on algae (average${\pm}$SD: $56.6{\pm}26.4{\mu}gC\;L^{-1}\;day^{-1}$) were $\sim$fourfold higher than that on bacteria $(12.7{\pm}6.0{\mu}gC\;L^{-1}\;day^{-1})$. MICZ CIRs on bacteria $(7.0{\pm}2.8{\mu}gC\;L^{-1}\;day^{-1})$ and algae $(28.6{\pm}20.6{\mu}gC\;L^{-1}\;day^{-1})$ were slightly higher than MACZ CIRs. On average, MICZ accounted for 55.6 and 50.5% of total zooplankton grazing on bacteria and algae, respectively. Considering the MICZ and MACZ CIRs, the relative role of transferring carbon to higher trophic levels were nearly similar between both communities in the lake-river ecosystem.

Seasonal changes in zooplankton community in the coastal waters off Incheon

  • Youn, Seok-Hyun;Choi, Joong-Ki
    • Journal of the korean society of oceanography
    • /
    • v.38 no.3
    • /
    • pp.111-121
    • /
    • 2003
  • The seasonal succession of zooplankton communities in the coastal area off Incheon, Kyeonggi Bay, was investigated with the samples collected at intervals of 10 to 15 days from January 1999 to December 2000. Total abundance of zooplankton communities showed remarkable seasonal variations, ranged from 1,100 to $120,400{\;}indiv./\textrm{m}^3$, and annual mean abundance was $22,000{\;}indiv./\textrm{m}^3$. There were several times of the total abundance during a year, and the timing ofhigh abundances were about the same in 1999 and 2000. During the study period except summer, the abundance of dinoflagellate Noctiluca scintillans and copepod Acartia hongi contributed to the most part of total zooplankton. Whereas, during summer, smaller copepod Oithona davisae and Paracalanus crassirostris were dominant species. Zooplankton communities in the coastal waters off Incheon showed typical characteristics of coastal-estuarine communities, which were dominated by a few species, and abrupt seasonal variations in abundance. We suggest that the seasonal succession and abundance variations of zooplankton communities were caused by the seasonal variations in water temperature and by the seasonally varying phytoplankton biomass in the study area.

Spring and Summer Zooplankton Community near Tongyeong and Namhaedo in the South Sea of Korea (통영-남해도 주변해역의 봄-여름 동물플랑크톤 군집)

  • DO, An-Thanh;LEE, Jeong-Hoon;CHOI, Jung-Wha;PARK, Won-Gyu;LEE, Ki-Won
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.869-877
    • /
    • 2017
  • The monthly variations of zooplankton community were investigated at 12 stations near Tongyeong and Namhaedo in the South Sea of Korea from April to July, 2012. Zooplankton samples were collected by a plankton net (RN80) from near the bottom to the surface. Zooplankton community consisted of 97 taxa, and the mean abundance ranged from $213inds.m^{-3}$ in July to $426inds.m^{-3}$ in April. Copepods constituted 38.98% of zooplankton abundance, and included 39 species. Calanus sinicus, Corycaeus affinis, Paracalanus parvus s.l., copepodids, Evadne nordmonni, Podon leuckarti, cirriped nauplii, Muggiacea sp., Diphyes sp., and Zonosagitta bedoti were dominant species. Of these, Calanus sinicus was the most abundant throughout the study period, being constituted 18.6% of total zooplankton abundance. The density variations of dominant species between stations and months were correlated with the environmental factors. Zooplankton community varied with by sampling months, being influenced by monthly oceanographic variations.

Ecosystem Consequences of an Anomalously High Zooplankton Biomass in the South Sea of Korea

  • Kang, Young-Shil;Rebstock, Ginger-A.
    • Journal of the korean society of oceanography
    • /
    • v.39 no.4
    • /
    • pp.207-211
    • /
    • 2004
  • We used long time series of hydrographic and biological variables to examine the ecosystem consequences of a rare, anomalous event in the south sea of Korea. The highest zooplankton biomass in 36 years of sampling occurred in April 1997. Zooplankton biomass exceeded 2 times than the long-term mean at 35% of the stations. Copepod abundance was low in April and June and also failed to show a seasonal peak in 1997. Mackerel (Scomber japonicus) catches were very low in spring 1997 and 1999, in spite of a positive correlation between zooplankton biomass and mackerel catches at lags of 0, 12 and 24 months. It was discussed that a high zooplankton biomass with low copepod abundance in April 1997 resulted from unusual high temperature and salps abundance. Water temperatures were ca. $2^{\circ}C$ higher than the long-term mean at the surface. Salps and doliolids (thaliaceans), especially the warm-water species Doliolum nationalis, dominated the zooplankton. An unusual incursion of the Tsushima Warm Current may have transported the thaliaceans into the area and/or produced favorable conditions for a bloom. This study suggested that taxonomic composition of zooplankton was important to decide mackerel catches.

Seasonal Variation of Zooplankton Community Structure in Southern Sea of Korea (한국 남해 동물플랑크톤 군집 구조의 계절 변동)

  • Lee, Ye Ji;Lee, Jeong hoon;Kim, Yeonghye
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.4
    • /
    • pp.445-455
    • /
    • 2021
  • We aimed to study the structure of the zooplankton community in the Southern Sea of the Republic of Korea. Zooplankton samples were collected in February (winter), May (spring), August (summer), and November (autumn) of 2020. The zooplankton collected belonged to a total of 166 taxa and 12 phyla, including some unidentified individuals and those from upper taxa. The number of taxa collected were the highest in winter at 117, and the lowest in May at 93. The dominant taxa were Oikopleura spp. in the winter, Gastropoda larvae in the spring, and Paracalanus parvus s.l. in the summer and autumn. The community structure of the zooplankton was clearly distinguishable between the seasons. The mean density of zooplankton was the highest in autumn and the lowest in summer (576,039 and 313,000 individuals/1,000 m3, respectively). Based on the analysis of relationships between the density of the six major taxa and environmental factors, a significant correlation (P<0.05) between the four taxa and environmental factors was found. Therefore, in order to understand changes in the zooplankton community, quantitative and qualitative investigations of biological factors as well as physical factors should be conducted.

Differences in Zooplankton Community Structure between Surface Water and Vertical Integrated Water in Middle and Down Stream of Nakdong River (낙동강 중⋅하류에서 표층 시료와 수직 예망 시료의 동물플랑크톤 군집 구조 차이 비교)

  • Min-Seok Kim;Hae-Kyung Park
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.3
    • /
    • pp.215-222
    • /
    • 2023
  • Zooplankton are primary consumers in the food web connecting primary producers and predators such as small fish, playing an important role in energy transfer in aquatic ecosystems. Therefore, it is essential to understand the zooplankton community structure in material cycle and energy flow in aquatic ecosystems. Zooplankton in large rivers with a low flow rate would distribute vertically as in lakes. In this study, we collected zooplankton by surface water filtration and vertical haul method with 64 ㎛-mesh plankton net at three stations (ND-1, ND-2, ND-3) in Nakdong River fortnightly from June 2018 to December 2019. Species composition and individual densities were analyzed. All three stations showed differences in relative abundance of zooplankton groups between surface water and vertical integrated water, with the largest difference shown in the deepest station, ND-2. In vertically integrated water at ND-2, the relative abundance of rotifera was low by a maximum of 25% and that of cladocera was high by a maximum of 22% compared to surface water samples. These results indicate that surface water filtration method is not enough to represent the community structure of zooplankton compared to the vertical haul method in large rivers.

Consideration on Application of Zooplankton Index for Wetland Ecosystem Evaluation (습지생태계 평가를 위한 동물플랑크톤 지수 적용 방안 고찰)

  • Hyun-Woo Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.1
    • /
    • pp.51-59
    • /
    • 2024
  • This note summarizes the application of zooplankton indices for water quality management and estimation based on main research topics of articles focusing on wetland ecosystems, topics that are remained poorly investigated in S. Korea. The aquatic ecosystem-based consists of indices that respond to different target environmental factors, including environmental disturbance. Among the major indicator species and biota, we reviewed that management strategy for the wetland environment has to be focused more on small-sizes, in terms of zooplankton ecology and indices. The ecology of zooplankton communities in freshwater ecosystem has been the focus of an increasing number of studies since 2019, and considerable progress has been made in understanding the major mechanisms involved in regulating their abundance, diversity and spatio-temporal patterns. Even though studies on the freshwater ecosystem in Korea have a long history, a few of studies on zooplankton biota were conducted at wetlands. We suggested the candidate zooplankton indices proposed by the U.S. EPA and EU to suit Korean conditions. In the step of selecting metrics, the best available metrics are species-related variables, such as composition and abundance, as well as richness and diversity. Overall, in spite of several limitations, the development of a plankton-based multivariate assessment method in Korea wetlands is possible using mostly field research data. Later, it could be improved based on qualitative metrics on zooplankton, and with the emergence of further survey data. The present information can be used as basic information for researchers who are dealing with aquatic environments and its interaction with organisms.

Stable carbon isotope signatures of zooplankton in some reservoirs in Korea

  • Lee, Jeayong;Lee, Yunkyoung;Jang, Changwon;Owen, Jeffrey S.;Kim, Jai-Ku;Eum, Jaesung;Jung, Sungmin;Kim, Bomchul
    • Journal of Ecology and Environment
    • /
    • v.36 no.3
    • /
    • pp.183-191
    • /
    • 2013
  • Dissolved organic carbon (DOC) concentrations and zooplankton and particulate organic matter (POM) ${\delta}^{13}C$ values were measured in five reservoirs in Korea. Zooplankton ${\delta}^{13}C$ and POM ${\delta}^{13}C$ showed large range from -33‰ to -22‰ and a significant difference among the reservoirs. One eutrophic reservoir, Lake Masan, showed unique characteristics with the highest zooplankton density, the highest ${\delta}^{13}C$, and the highest DOC. Zooplankton ${\delta}^{13}C$ was similar to POM ${\delta}^{13}C$, implying that zooplankton occupies substantial portion of POM or that zooplankton isotopic composition is related to selective grazing and assimilation of food sources from bulk POM. Except Lake Masan zooplankton ${\delta}^{13}C$ values were negatively correlated to DOC concentration in four reservoirs with mostly forest land use. This pattern can be probably attributed to intensive agricultural land use in the watershed of Lake Masan compared to the mostly forest land use in the other watersheds. Understanding the relationship between zooplankton ${\delta}^{13}C$ values and the origin of organic matter associated with watershed characteristics will be valuable to better understand trophic relationships in reservoirs in the summer monsoon region.