• 제목/요약/키워드: ZNN

검색결과 1건 처리시간 0.013초

뉴럴네트워크를 이용하여 EEG Data의 기저질환 유무 분류 (Classification of the presence or absence of underlying disease in EEG Data using neural network)

  • 윤희진
    • 디지털융복합연구
    • /
    • 제18권12호
    • /
    • pp.279-284
    • /
    • 2020
  • 2020년 1월, COVID19는 온 지구를 팬데믹에 빠트렸다. 이로 인해 경제적으로 큰 손실을 가져왔으며, 사회적으로 혼란을 일으키고 있다. 이러한 코로나19는 심장병, 고혈압, 당뇨, 뇌졸중, 우울증, 암 등과 같은 기저질환자들에게 감염률이 월등히 높다. 또한, 기저질환자가 기저질환이 없는 사람들보다 치명률이 훨씬 높다고 연구되었다. 본 연구에서는 뇌파데이터를 이용하여 기저질환의 유·무를 분류하였다. 기저질환자 유·무에 대한 분류를 위해 사용된 데이터는 데이터사이언스랩에서 제공하는 뇌파데이터로 33개의 특징과 69개의 샘플로 이루어졌다. 데이터의 전처리는 Z-score를 사용하였다. 분류는 뉴럴네트워크 인 NEWFM와 ZNN엔진을 사용하였다. 실험 결과 기저질환자의 유·무에 대한 분류결과 NEWFM은 77.94%, ZNN은 76.47%의 실험 결과를 얻었다. 이 연구를 통해 뇌파데이터를 측정하고 기저질환의 유무를 분류하고 높은 감염률을 보이는 기저질환자들이 COVID19로부터 예방 할 수 있으리라 기대한다. 이를 기반으로 향후 기저질환에 대한 세분류를 할 수 있는 연구가 필요하고, 각 기저질환이 전염병에 미치는 영향에 대해서도 연구가 필요하다.