• Title/Summary/Keyword: ZINB(Zero-In ated Negative Binomial)

Search Result 2, Processing Time 0.015 seconds

Bayesian Inference for the Zero In ated Negative Binomial Regression Model (제로팽창 음이항 회귀모형에 대한 베이지안 추론)

  • Shim, Jung-Suk;Lee, Dong-Hee;Jun, Byoung-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.951-961
    • /
    • 2011
  • In this paper, we propose a Bayesian inference using the Markov Chain Monte Carlo(MCMC) method for the zero inflated negative binomial(ZINB) regression model. The proposed model allows the regression model for zero inflation probability as well as the regression model for the mean of the dependent variable. This extends the work of Jang et al. (2010) to the fully defiend ZINB regression model. In addition, we apply the proposed method to a real data example, and compare the efficiency with the zero inflated Poisson model using the DIC. Since the DIC of the ZINB is smaller than that of the ZIP, the ZINB model shows superior performance over the ZIP model in zero inflated count data with overdispersion.

Zero In ated Poisson Model for Spatial Data (영과잉 공간자료의 분석)

  • Han, Junhee;Kim, Changhoon
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.231-239
    • /
    • 2015
  • A Poisson model is the first choice for counts data. Quasi Poisson or negative binomial models are usually used in cases of over (or under) dispersed data. However, these models might be unsuitable if the data consist of excessive number of zeros (zero inflated data). For zero inflated counts data, Zero Inflated Poisson (ZIP) or Zero Inflated Negative Binomial (ZINB) models are recommended to address the issue. In this paper, we further considered a situation where zero inflated data are spatially correlated. A mixed effect model with random effects that account for spatial autocorrelation is used to fit the data.