• 제목/요약/키워드: Z-parameter

검색결과 311건 처리시간 0.028초

Utrecht Interstitial Applicator Shifts and DVH Parameter Changes in 3D CT-based HDR Brachytherapy of Cervical Cancer

  • Shi, Dan;He, Ming-Yuan;Zhao, Zhi-Peng;Wu, Ning;Zhao, Hong-Fu;Xu, Zhi-Jian;Cheng, Guang-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3945-3949
    • /
    • 2015
  • Background: For brachytherapy of cervical cancer, applicator shifts can not be avoided. The present investigation concerned Utrecht interstitial applicator shifts and their effects on organ movement and DVH parameters during 3D CT-based HDR brachytherapy of cervical cancer. Materials and Methods: After the applicator being implanted, CT imaging was achieved for oncologist contouring CTVhr, CTVir, and OAR, including bladder, rectum, sigmoid colon and small intestines. After the treatment, CT imaging was repeated to determine applicator shifts and OARs movements. Two CT images were matched by pelvic structures. In both imaging results, we defined the tandem by the tip and the base as the marker point, and evaluated applicator shift, including X, Y and Z. Based on the repeated CT imaging, oncologist contoured the target volume and OARs again. We combined the treatment plan with the repeated CT imaging and evaluated the change range for the doses of CTVhr D90, D2cc of OARs. Results: The average applicator shift was -0.16 mm to 0.10 mm for X, 1.49 mm to 2.14 mm for Y, and 1.9 mm to 2.3 mm for Z. The change of average physical doses and EQD2 values in Gy${\alpha}/{\beta}$ range for CTVhr D90 decreased by 2.55 % and 3.5 %, bladder D2cc decreased by 5.94 % and 8.77 %, rectum D2cc decreased by 2.94 % and 4 %, sigmoid colon D2cc decreased by 3.38 % and 3.72 %, and small intestines D2cc increased by 3.72 % and 10.94 %. Conclusions: Applicator shifts and DVH parameter changes induced the total dose inaccurately and could not be ignored. The doses of target volume and OARs varied inevitably.

마이크로 펄스 플라즈마 질화에 의해 생성된 금형 공구강의 표면층에 관한 연구 -공정 변수의 영향- (The Microstructures and Properties of Surface Layer on the Tool Steel Formed by Ion Nitriding -Effects of Process Parameter-)

  • 이재식;김한군;유용주
    • 열처리공학회지
    • /
    • 제14권1호
    • /
    • pp.8-16
    • /
    • 2001
  • The effects of gas composition, pressure, temperature and time on the case thickness, hardness and nitride formation in the surface of tool steels(STD11 and STD61) have been studied by micro-pulse plasma nitriding. External compound layer and internal diffusion layer and the diffusion layer were observed in the nitrided case of tool steels. The relative amounts and kind of phases formed in the nitrided case changed with the change of nitriding conditions. Generally, only nitride phases such as ${\gamma}(Fe_4N)$, ${\varepsilon}(Fe_{2-3}N)$, or $Cr_{1.75}V_{0.25}N_2$ phases were detected in the compound layer, while nitride and carbide phases such as ${\varepsilon}-nitride(Fe_{2-3}N)$, $(Cr,Fe)_{\gamma}C_3$ or $Fe_3C$ were detected in the diffusion layer by XRD analysis. The thickness of compound layer increased with the increase of nitrogen content in the gas composition. Maximum case depth was obtained at gas pressure of 200Pa.

  • PDF

Strength prediction of rotary brace damper using MLR and MARS

  • Mansouri, I.;Safa, M.;Ibrahim, Z.;Kisi, O.;Tahir, M.M.;Baharom, S.;Azimi, M.
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.471-488
    • /
    • 2016
  • This study predicts the strength of rotary brace damper by analyzing a new set of probabilistic models using the usual method of multiple linear regressions (MLR) and advanced machine-learning methods of multivariate adaptive regression splines (MARS), Rotary brace damper can be easily assembled with high energy-dissipation capability. To investigate the behavior of this damper in structures, a steel frame is modeled with this device subjected to monotonic and cyclic loading. Several response parameters are considered, and the performance of damper in reducing each response is evaluated. MLR and MARS methods were used to predict the strength of this damper. Displacement was determined to be the most effective parameter of damper strength, whereas the thickness did not exhibit any effect. Adding thickness parameter as inputs to MARS and MLR models did not increase the accuracies of the models in predicting the strength of this damper. The MARS model with a root mean square error (RMSE) of 0.127 and mean absolute error (MAE) of 0.090 performed better than the MLR model with an RMSE of 0.221 and MAE of 0.181.

변형가공도를 이용한 AI 5083 합금의 고온변형거동 (High Temperature Deformation Behavior of Al 5083 Alloy Using Deformation Processing Maps)

  • 고병철;김종현;유연철
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.450-458
    • /
    • 1998
  • The high temperature deformation behavior of Al 5083 alloy has been studied in the temperature range of 350 to 520 ${\circ}C$ and strain rate range of 0.2 to 3.0/sec by torsion test. The strain rate sensitivity(m) of the material was evaluated and used for estabilishing power dissipation maps following the dynamic material model. These maps show the variation of efficiency of power dissipation(${\eta}$=2m/(2m+1)) with temperature and strain rate. Hot restoration of dynamic recrystallization (DRX) was analyzed from the flow curve, deformed microstructure, and processing maps during hot deformation. Also, the effect of deformation strain on the efficiency of power dissipation of the alloy was analysed using the processing maps. Moreover relationship between the hot-ductility and efficiency of power dissipation of the alloy depending on thmperature and strain rate was studied using the Zener-Hollomon parameter(Z=${\varepsilon}$exp(Q/RT) It is found that the maximum efficiency of power dissipation for DRX in Al 5083 alloy is about 74.6 pct at the strain of 0.2. The strain rate and temperature at which the efficiency peak occurred in the DRX domain is found to be ∼0.1/sec and ∼450${\circ}C$ respectively.

  • PDF

병렬로봇의 설계 공차가 궤적 정밀도에 미치는 영향 분석 (The Analysis of Trajectory Tracking Error Caused by the Tolerance of the Design Parameters of a Parallel Kinematic Manipulator)

  • 박찬훈;박동일;김두형
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.248-255
    • /
    • 2016
  • Machining error makes the uncertainty of dimensional accuracy of the kinematic structure of a parallel robot system, which makes the uncertainty of kinematic accuracy of the end-effector of the parallel robot system. In this paper, the tendency of trajectory tracking error caused by the tolerance of design parameters of the parallel robot is analyzed. For this purpose, all the position errors are analyzed as the manipulator is moved on the target trajectory. X, Y, Z components of the trajectory errors are analyzed respectively, as well as resultant errors, which give the designer of the manipulator the intuitive and deep understanding on the effects of each design parameter to the trajectory tracking errors caused by the uncertainty of dimensional accuracy. The research results shows which design parameters are critically sensitive to the trajectory tracking error and the tendency of the trajectory tracking error caused by them.

Modeling the tidal connection between in and around galaxy clusters

  • 송현미;이정훈
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.53.1-53.1
    • /
    • 2011
  • We analyze the halo and galaxy catalogs from the Millennium simulations at redshifts z=0, 0.5, 1 to determine the alignment profiles of cluster galaxies in terms of the matter density correlation coefficient and discuss a cosmological implication our result has for breaking parameter degeneracies. For each selected cluster, we measure the alignment between the major axes of the pseudo inertia tensors from all satellites within cluster's virial radius and from only those satellites within some smaller radius. Then we average the measured values over the similar-mass sample to determine the cluster galaxy alignment profile as a function of top-hat scale difference at each redshift. It is shown that the alignment profile of cluster galaxies is well approximated by a power-law of the nonlinear density correlation coefficient that is independent of the power spectrum normalization and bias factor. The alignment profile of cluster galaxies is found to have higher amplitude and lower power-law index when averaged over the larger-mass sample and to have rather weak redshift-dependence. This result is consistent with the picture that the satellite galaxies retain the memory of the external tidal fields right after merging and infalling into the clusters but they gradually lose the initial alignment tendency as the cluster's relaxation proceeds. Demonstrating that the nonlinear density correlation coefficient varies sensitively with the density parameter and neutrino mass fraction, we discuss a potential power of the cluster galaxy alignment profile as an independent probe of cosmology.

  • PDF

MC-MIPOG: A Parallel t-Way Test Generation Strategy for Multicore Systems

  • Younis, Mohammed I.;Zamli, Kamal Z.
    • ETRI Journal
    • /
    • 제32권1호
    • /
    • pp.73-83
    • /
    • 2010
  • Combinatorial testing has been an active research area in recent years. One challenge in this area is dealing with the combinatorial explosion problem, which typically requires a very expensive computational process to find a good test set that covers all the combinations for a given interaction strength (t). Parallelization can be an effective approach to manage this computational cost, that is, by taking advantage of the recent advancement of multicore architectures. In line with such alluring prospects, this paper presents a new deterministic strategy, called multicore modified input parameter order (MC-MIPOG) based on an earlier strategy, input parameter order generalized (IPOG). Unlike its predecessor strategy, MC-MIPOG adopts a novel approach by removing control and data dependency to permit the harnessing of multicore systems. Experiments are undertaken to demonstrate speedup gain and to compare the proposed strategy with other strategies, including IPOG. The overall results demonstrate that MC-MIPOG outperforms most existing strategies (IPOG, IPOF, IPOF2, IPOG-D, ITCH, TConfig, Jenny, and TVG) in terms of test size within acceptable execution time. Unlike most strategies, MC-MIPOG is also capable of supporting high interaction strengths of t > 6.

Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter

  • Houari, Mohammed Sid Ahmed;Bessaim, Aicha;Bernard, Fabrice;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제28권1호
    • /
    • pp.13-24
    • /
    • 2018
  • A size-dependent novel hyperbolic shear deformation theory of simply supported functionally graded beams is presented in the frame work of the non-local strain gradient theory, in which the stress accounts for only the nonlocal strain gradients stress field. The thickness stretching effect (${\varepsilon}_z{\neq}0$) is also considered here. Elastic coefficients and length scale parameter are assumed to vary in the thickness direction of functionally graded beams according to power-law form. The governing equations are derived using the Hamilton principle. The closed-form solutions for exact critical buckling loads of nonlocal strain gradient functionally graded beams are obtained using Navier's method. The derived results are compared with those of strain gradient theory.

AZ31-xCa (x=0, 0.7, 2.0 wt.%) 압출재의 압축변형시 파괴거동 (Fracture Behavior of AZ31-xCa (x=0, 0.7, 2.0 wt.%) Extrudes during Compression)

  • 강나은;임창동;유봉선;박익민
    • 대한금속재료학회지
    • /
    • 제48권1호
    • /
    • pp.85-89
    • /
    • 2010
  • The plastic deformation behavior of magnesium alloy is affected simultaneously by deformation temperature and strain rate under warm and/or hot working conditions. The soundness of deformation of AZ31-xCa (x=0. 0.7, 2.0 wt.%) extrudes during compression was strongly affected by processing variables including deformation temperature, strain rate. compression-loading direction, which was related to the activation of available deformation systems. The deformation behavior of AZ31-xCa extrudes was also affected by Ca content, which was related to the change of the sort and fraction of second phase. The complex effects of deformation temperature and strain rate on the deformation behavior of AZ31-xCa extrudes during compression under various conditions could be successfully described by Zener-Hollomon parameter.

Numerical studies on the effects of the lateral boundary on soil-structure interaction in homogeneous soil foundations

  • Li, Z.N.;Li, Q.S.;Lou, M.L.
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.421-434
    • /
    • 2005
  • In this paper, the finite element method is applied to investigate the effect of the lateral boundary in homogenous soil on the seismic response of a superstructure. Some influencing factors are presented and discussed, and several parameters are identified to be important for conducting soil-structure interaction experiments on shaking tables. Numerical results show that the cross-section width L, thickness H, wave propagation velocity and lateral boundaries of soil layer have certain influences on the computational accuracy. The dimensionless parameter L/H is the most significant one among the influencing factors. In other words, a greater depth of soil layer near the foundation should be considered in shaking table tests as the thickness of the soil layer increases, which can be regarded as a linear relationship approximately. It is also found that the wave propagation velocity in soil layer affects the numerical accuracy and it is suggested to consider a greater depth of the soil layer as the wave propagation velocity increases. A numerical study on a soil-structure experimental model with a rubber ring surrounding the soil on a shaking table is also conducted. It is found the rubber ring has great effect on the soil-structure interaction experiments on shaking table. The experimental precision can be improved by reasonably choosing the elastic parameter and width of the rubber ring.