• Title/Summary/Keyword: Z-directional stress

Search Result 3, Processing Time 0.017 seconds

A Study on the application for Z-Quality steel (Z-Quality 강재 적용에 대한 고찰)

  • Park, Sungjun;Ha, Yunsok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.8-13
    • /
    • 2017
  • The rolled carbon steel plate has anisotropic property in Z-direction(thickness direction). This is induced by cooling rate difference of Z-direction and sulfur which make non-metallic inclusion(MnS) at center line of thickness direction. Z-directional mechanical properties of normal steel plate are not generally specified and it is defined for Z-Quality steel only through tensile test in Z-direction. If Z-quality steel is not applied for cruciform joint, the lamella tearing will be occurred by tensile stress after welding & during operation of the structure. In this research, one equation estimating Z-directional(orthogonal to plate) stress was developed to prevent lamella tearing by welding. This equation deals with plate thickness & joint configuration(eccentricity, angle and curvature). Analyses were done by strain boundary method using sectional FE modeling and FE 3D models are also used for some cases. Designers can predict the possibility of lamella tearing by adequately applying the result and can appropriately minimize the application of Z-quality steel by revising welding design to some extent.

  • PDF

A STUDY ON AMALGAM CAVITY FRACTURE WITH TWO DIMENSIONAL FINITE ELEMENT METHOD I : VARIATION OF THE WIDTH OF CAVITY (아말감 와동의 파절에 관한 2차원 유한요소법적 연구 I : 와동 폭의 변화)

  • Kim, Han-Wook;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.655-669
    • /
    • 1995
  • Restorative procedures can lead to weakening tooth due to reduction and alteration of tooth structure. It is essential to prevent fractures to conserve tooth. Among the several parameters in cavity designs, cavity isthmus is very important. In this study, amalgam 0 cavity was prepared on maxillary first premolar. Two dimensional finite element models were made by serial photographic method and isthmus(1/4, 1/3, 1/2, 2/3 of intercuspal distance) were varied. Three or four-nodal mesh were used for the two dimensional finite element models. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. 1S model was sound tooth with no amalgam cavity. B model was assumed perfect bonding between the restoration and cavity wall. Both compressive and tensile forces were distributed directly to the adjacent regions. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed von Mises stress, 1 and 2 directional normal stress and Y and Z axis translation with FEM software Super SAPII Version 5.2 (Algor Interactive System Co.) and hardware 486 DX2 PC. The results were as :follows : 1. 1S model was slightly different with 1B model in stress distibution. 1S, 2B, 3B, 4B models showed similiar stress distribution. 2. 1S model and four B models showed similiar pattern in Y axis and Z axis translation. 3. 1S model and four B models showed the bending phenomenon in the translation. 4. As increasing of the width of the cavity, experimental group was similiar with the control group in stress distribution. 5. As increasing of the width of the cavity, experimental group was similiar with the control group in Y and Z axis tranlation.

  • PDF

Microstructure-Properties Relationships of Ti-6Al-4V Parts Fabricated by Selective Laser Melting

  • Mezzetta, Justin;Choi, Joon-Phil;Milligan, Jason;Danovitch, Jason;Chekir, Nejib;Bois-Brochu, Alexandre;Zhao, Yaoyao Fiona;Brochu, Mathieu
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.605-612
    • /
    • 2018
  • This work investigates the relationships between the static mechanical properties of Ti-6Al-4V manufactured through selective laser melting (SLM) and post-process heat treatments, namely stress relieve, annealing and hot isostatic pressing (HIP). In particular, Ti-6Al-4V parts were fabricated in three different build orientations of X, Z, and $45^{\circ}$ to investigate the multi-directional mechanical properties. The results showed that fully densified Ti-6Al-4V parts with densities of up to 99.5% were obtained with optimized SLM parameters. The microstructure of stress relieved and mill annealed samples was dominated by fine ${\alpha}^{\prime}$ martensitic needles. After HIP treatment, the martensite structure was fully transformed into ${\alpha}$ and ${\beta}$ phases (${\alpha}+{\beta}$ lamellar). Within the realm of tensile properties, the yield and ultimate strength values were found statistically similar with respect to the built orientation for a given heat treatment. However, the ductility was found orientation dependent for the HIP samples, where a lower value was observed for samples built in the X direction.