• Title/Summary/Keyword: Z-Stack

Search Result 26, Processing Time 0.027 seconds

Design and Implementation of a Range Measuring Sensor Network with Z-Stack on CC2530 (CC2530상에서 Z-Stack을 이용한 거리 측정 센서 네트워크 디자인 및 구현)

  • Kim, Byungsoon;Kang, Oh-Han
    • Journal of Digital Contents Society
    • /
    • v.15 no.2
    • /
    • pp.167-172
    • /
    • 2014
  • As there are few documents about how to design and implement a sensor network with Z-Stack, developers can get information from developer's community on Internet. That takes longer time to develop the network. This paper presents how to design and implement a range measuring sensor network with Z-Stack's Generic application and ultrasonic sensors based on CC2530, and then show experimental results through the implemented network. This work will make less time for a developer to implement a sensor network with Z-Stack.

Porting of Z-Stack and Implementation of UART on the TI CC2530 (TI CC2530 상의 Z-Stack 이식 및 UART 구현)

  • Kim, Byungsoon
    • Journal of Digital Contents Society
    • /
    • v.13 no.4
    • /
    • pp.525-530
    • /
    • 2012
  • Wireless sensor networks consist of resource constraint devices which typically send data measured by sensors attached to the end devices towards a coordinator. One of the best solution for wireless sensor networks is ZigBee, where it is wireless standard introduced for low power, low cost wireless communication with moderate data rates. In this paper, we present porting of Z-Stack and implementation of UART on the TI CC2530. We show that our implemented board works correctly in terms of transmitting and receiving data via serial port.

Pressure Distribution Simulation on Geometrical Manifolds Structure for Fabrication of a Planar-type Fuel-Cell Stack (평판형 연료전지 스택의 제조를 위한 매니폴드 형상별 압력분포 시뮬레이션)

  • Park, Se-Joon;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.609-614
    • /
    • 2009
  • A fuel-cell power system among various alternative power sources has many advantages such as comparatively independable circumstances, high-efficient, and heat-recyclable, thus it is now able to be up to hundreds MWh-scaled through improving feasibility and longevity of it. During the last few decades, numerous research results has been investigated to expand interest in fuel-cell technology. This study presents pressure distribution on the geometrical manifold structures, which are U-type and Z-type, of a planar-type fuel-cell stack by simulated with computational fluid dynamics(CFD). Then, electrical performance of a 200W fuel-cell stack, which is U-type, was diagnosed after pre-conditioning operation. The stack has electrical characteristics ; 22V, 10A, 220W, and current density $200mA/cm^2$.

Implementation of EJB Component by Using Z specification (Z명세를 이용한 EJB 컴포넌트의 구현)

  • Ma, Dai-Sung
    • Journal of The Korean Association of Information Education
    • /
    • v.8 no.4
    • /
    • pp.555-562
    • /
    • 2004
  • There are informal, semi-formal and formal methods in software specification. Among them, formal method which is based on mathematical theory had been used to remove ambiguity, incompleteness and contradiction efficiently. In this paper, we propose implementation steps from Z specification to EJB source code, Also, as a case study we show steps consisted of specifying stack data structure and implementing it in EJB. In conclusion, Z specification proved to be capable of implementing EJB interface, exception class, method, through refinement and definition of schema, interface, post-condition, pre-condition.

  • PDF

Application of Three-Dimensional Light Microscopy for Thick Specimen Studies

  • Rhyu, Yeon Seung;Lee, Se Jeong;Kim, Dong Heui;Uhm, Chang-Sub
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • The thickness of specimen is an important factor in microscopic researches. Thicker specimen contains more information, but it is difficult to obtain well focused image with precise details due to optical limit of conventional microscope. Recently, a microscope unit that combines improved illumination system, which allows real time three-dimensional (3D) image and automatic z-stack merging software. In this research, we evaluated the usefulness of this unit in observing thick samples; Golgi stained nervous tissue and ground prepared bone, tooth, and non-transparent small sample; zebra fish teeth. Well focused image in thick samples was obtained by processing z-stack images with Panfocal software. A clear feature of neuronal dendrite branching pattern could be taken. 3D features were clearly observed by oblique illumination. Furthermore, 3D array and shape of zebra fish teeth was clearly distinguished. A novel combination of two channel oblique illumination and z-stack imaging process increased depth of field and optimized contrast, which has a potential to be further applied in the field of neuroscience, hard tissue biology, and analysis of small organic structures such as ear ossicles and zebra fish teeth.

Z-Source Voltage Sag Compensator (Z-소스 전압Sag 보상기)

  • Kim, J.H.;Oum, J.H.;Jung, Y.G.;Lim, T.C.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.485-487
    • /
    • 2007
  • 본 연구에서는 Z-소스 네트워크를 갖는 순시전압sag 보상기를 제안하였다. 제안된 시스템은 연료전지 스택(fuel cells stack)을 갖고 있는 Z-소스 인버터의 shoot-through제어에 의하여 ac보상전압을 직접 발생한다. PSIM 시뮬레이션에 의하여 sag와 swell이 발생되는 정상상태와 과도상태에서의 제안된 방법의 타당성을 검토하였다.

  • PDF

Z-Source Converter with Maximum Boost Voltage Gain

  • Nguyen, Minh-Khai;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.112-114
    • /
    • 2008
  • This paper proposes a new two-stage Z-source converter (TSZC). The purpose of the proposed system is to obtain the ac voltage with a maximum boost voltage for fuel cell applications as a renewable energy source. In order to provide a continuous current path, a switching strategy for the dc-ac ZSI and ac-ac ZSC of the proposed system was used. The operation principle, analysis and simulation results of 1.2 kW fuel cell stack were also presented.

  • PDF

DESIGNING A SMALL-SIZED ENGINEERING MODEL OF SOLAR EUV TELESCOPE FOR A KOREAN SATELLITE (인공위성 탑재용 소형 극자외선 태양망원경 공학 모형 설계)

  • 한정훈;장민환;김상준
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.145-152
    • /
    • 2001
  • For the research of solar EUV (extreme ultraviolet) radiation, we have designed a small-sifted engineering model of solar EUV telescope, which is suitable for a Korean satellite. The EUV sole. telescope was designed to observe the sun at $584.3AA$(He I) and $629.7AA$(OV) The optical system is an f/8 Ritchey-Chr rien, and the effective diameter and focal length are 80mm and 640mm, respectively. The He I and 0V filters are loaded in a filter wheel. In the detection part, the MCP (Microchannel Plate) type is Z-stack, and the channel-to-diameter radio is 40:1. MCP and CCD are connected by fiber optic taper. A commercial optical design software is used for the analysis of the optical system design.

  • PDF

Design of Inlet Manifold for PEM Fuel Cells and Numerical Analysis (고분자 전해질 연료전지를 위한 연료주입구 설계 및 수치해석)

  • Uhm, Seung-Bae;Na, Tae-Kyung;Kim, Hong-Suk;Baek, Jung-Sik;Sung, Dong-Mug;Kim, Tae-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.172-175
    • /
    • 2007
  • The Performance of a PEMFC stack is strongly dependent on the uniform reactants distribution on MEA. The uniform distribution can be achieved by flow-field pattern and manifold design optimized to satisfy operating conditions. This paper investigates uniform reactants distribution in channels by changing manifold shape and inlet mass flow rate. Typical U and Z shape and modified U and Z shape manifolds with buffer zone were designed. To check the uniform reactants distribution, standard deviation of mass flow rate was compared. The numerical results show that the inlet mass flow rate, inlet shape, and manifolds shape are critical factor for uniform distribution.

  • PDF

Numerical Study on the Thermal and Flow Characteristics of Manifold Feed-Stream in Polymer Electrolyte Fuel Cells (고분자 전해질 연료전지 매니폴드의 열유동 특성에 관한 수치적 연구)

  • Jung Hye-Mi;Um Sukkee;Sohn Young-Jun;Park Jungsun;Lee Won-Yong;Kim Chang-Soo
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.41-52
    • /
    • 2005
  • The effects of internal manifold designs on the reactants feed-stream in Polymer Electrolyte Fuel Cells [PEFCs] is studied to figure out flow and thermal distribution patterns over an entire fuel cell stack. Reactants flows are modeled either laminar of turbulent depending on regions and the open channels in the bipolar plates are simulated by porous media where permeability should be pre-deter-mined for computational analysis. In this work, numerical models for reactants feed-stream In the PEFC manifolds are classified Into two major flow patterns: Z-shape and U-shape. Several types of manifold geometries are analyzed to find the optimal manifold configurations. The effect of heat generation in PEFC on the flow distribution is also Investigated applying a simplified heat transfer model in the stack level (i.e. multi-cell electrochemical power-generation unit). This modeling technique Is well suited for many large scale problems and this scheme can be used not only to account for the manifold flow pattern but also to obtain Information on the optimal design and operation of PEFC systems.

  • PDF