• Title/Summary/Keyword: Z축

Search Result 205, Processing Time 0.02 seconds

A study on dosimetric comparison of craniospinal irradiation using tomotherpy and reproducibility of position (토모테라피를 이용한 뇌척수조사의 선량적 비교와 자세 재현성에 대한 고찰)

  • Lee, Heejeong;Kim, Jooho;Lee, Sangkyu;Yoon, Jongwon;Cho, Jeonghee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • Purpose: The purpose of this study was to verify dosimetric results and reproducibility of position during craniospinal irradiation (CSI) using tomotherapy (Accuray Incorporated, USA). Also, by comparing with conventional CSI Technique, we confirmed the efficiency of using a Tomotherapy. Materials and Methods: 10 CSI patients who get tomotherapy participate. Patient-specific quality assurances (QA) for each patient are conducted before treatment. When treating, we took Megavoltage Computed Tomography (MVCT) that range of head and neck before treatment, L spine area after treatment. Also we conducted in-vivo dosimetry to check a scalp dose. Finally, we made a 3D conventional radiation therapy(3D-CRT) of those patients to compare dosimetric differences with tomotherapy treatment planning. Results: V107, V95 of brain is 0 %, 97.2 % in tomotherapy, and 0.3 %, 95.1 % in 3D-CRT. In spine, value of V107, V95 is 0.2 %, 18.6 % in tomotherapy and 89.6 %, 69.9 % in 3D-CRT. Except kidney and lung, tomotherapy reduced normal organ doses than 3D-CRT. The maximum positioning error value of X, Y, Z was 10.2 mm, -8.9 mm, -11.9 mm. Through in-vivo dosimetry, the average of scalp dose was 67.8 % of prescription dose. All patient-specific QA were passed by tolerance value. Conclusion: CSI using tomotherapy had a risk of parallel organ such as lung and kidney because of integral dose in low dose area. However, it demonstrated dosimetric superiority at a target and saved normal organ to reduce high dose. Also results of reproducibility were not exceeded margins that estimated treatment planning and invivo dosimetry showed to reduce scalp dose. Therefore, CSI using tomotherapy is considered to efficient method to make up for 3D-CRT.

  • PDF

Usefulness assessment of the Volumetric Modulated Arc Therapy technique for reducing low-dose areas during radiotherapy for patients with multiple metastatic cancers (다발성 전이암 환자의 방사선치료 시 저선량 영역 감소를 위한 용적조절 회전 방사선치료(Volumetric Modulated Arc Therapy) 기법의 유용성 평가)

  • Yun-won Choi;Dong-min Jeong;Se-young Kim;Ryeong-hwang Park;I-ji Kim;Yong-wan Cho;Yongjae Kwon;Byeol-nim Park;Gyeong-min Yoo;Ho-kyung Moon;Dong-jae Jang;Jae-young Lee;Dayoung Lim;Sang-gyu Lee;Jong-geol Baek
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.23-31
    • /
    • 2023
  • Purpose: The purpose of this study is to evaluate the usefulness of Non-Treat Functionality Volumetric Modulated Arc Therapy(NTF-VMAT) and Treat Functionality VMAT(TF-VMAT) treatment plans in reducing the low-dose area during radiation therapy for patients with multiple metastatic cancers. Materials and Methods: The study was conducted on an Arccheck phantom, treatment planning target locations were set in pairs at intervals of 2 cm, 4 cm, and 6 cm on the X, Y, and Z axes. Based on these location settings, the volume of the low-dose area in NTF-VMAT and TF-VMAT was measured and compared. Results: The results of the study showed that, within a prescription dose range of 10% ~ 70%, the difference in low-dose area volumes across each axis was as follows: On the X-axis, there was a maximum difference of -47.6% and a minimum difference of -2.2%. On the Y-axis, there was a maximum difference of -17.5% and a minimum difference of -7.3%. The Z-axis showed a maximum difference of -39.7%, with the smallest difference being -6.8%. Conclusion: In radiation therapy for patients with multiple metastatic cancers, the TF-VMAT treatment plan was able to reduce the low-dose area by 10-40% compared to NTF-VMAT. This suggests that utilizing Treat Functionality, which includes the Island block technique, improves dose distribution and minimizes side effects, making it beneficial for the treatment of patients with multiple metastatic cancers.

  • PDF

Usefulness of Non-coplanar Helical Tomotherapy Using Variable Axis Baseplate (Variable Axis Baseplate를 이용한 Non-coplanar 토모테라피의 유용성)

  • Ha, Jin-Sook;Chung, Yoon-Sun;Lee, Ik-Jae;Shin, Dong-Bong;Kim, Jong-Dae;Kim, Sei-Joon;Jeon, Mi-Jin;Cho, Yoon-Jin;Kim, Ki-Kwang;Lee, Seul-Bee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • Purpose: Helical Tomotherapy allows only coplanar beam delivery because it does not allow couch rotation. We investigated a method to introduce non-coplanar beam by tilting a patient's head for Tomotherapy. The aim of this study was to compare intrafractional movement during Tomotherapy between coplanar and non-coplanar patient's setup. Materials and Methods: Helical Tomotherapy was used for treating eight patients with intracranial tumor. The subjects were divided into three groups: one group (coplanar) of 2 patients who lay on S-plate with supine position and wore thermoplastic mask for immobilizing the head, second group (non-coplanar) of 3 patients who lay on S-plate with supine position and whose head was tilted with Variable Axis Baseplate and wore thermoplastic mask, and third group (non-coplanar plus mouthpiece) of 3 patients whose head was tilted and wore a mouthpiece immobilization device and thermoplastic mask. The patients were treated with Tomotherapy after treatment planning with Tomotherapy Planning System. Megavoltage computed tomography (MVCT) was performed before and after treatment, and the intrafractional error was measured with lateral(X), longitudinal(Y), vertical(Z) direction movements and vector ($\sqrt{x^2+y^2+z^2}$) value for assessing overall movement. Results: Intrafractional error was compared among three groups by taking the error of MVCT taken after the treatment. As the correction values (X, Y, Z) between MVCT image taken after treatment and CT-simulation image are close to zero, the patient movement is small. When the mean values of movement of each direction for non-coplanar setup were compared with coplanar setup group, X-axis movement was decreased by 13%, but Y-axis and Z-axis movement were increased by 109% and 88%, respectively. Movements of Y-axis and Z-axis with non-coplanar setup were relatively greater than that of X-axis since a tilted head tended to slip down. The mean of X-axis movement of the group who used a mouthpiece was greater by 9.4% than the group who did not use, but the mean of Y-axis movement was lower by at least 64%, and the mean of Z-axis was lower by at least 67%, and the mean of Z-axis was lower by at least 67%, and the vector was lower by at least 59% with the use of a mouthpiece. Among these 8 patients, one patient whose tumor was located on left frontal lobe and left basal ganglia received reduced radiation dose of 38% in right eye, 23% in left eye, 30% in optic chiasm, 27% in brain stem, and 8% in normal brain with non-coplanar method. Conclusion: Tomotherapy only allows coplanar delivery of IMRT treatment. To complement this shortcoming, Tomotherapy can be used with non-coplanar method by artificially tilting the patient's head and using an oral immobilization instrument to minimize the movement of patient, when intracranial tumor locates near critical organs or has to be treated with high dose radiation.

  • PDF

Effect of Flywheel Weight on Engine Performance for the Small Diesel Engine (Flywheel의 중량(重量)이 소형(小型) 디젤기관(機關)의 성능(性能)에 미치는 영향(影響))

  • Jung, Hae Kook;Kim, Sung Rai;Myung, Byung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.2
    • /
    • pp.143-152
    • /
    • 1988
  • This study was conducted to obtain basic data which affected engine performance of the power tiller being widely used in the rural area. Among the various factors affected engine performance, only flywheel weight was considered as the major factor in this study. Fuel consumption ratio, motoring loss, torque, vibration and mechanical efficiency of the engine tested were measured and analyzed on the four levels of flywheel weight (32.2, 29.7, 26.4, 24.2 kg). The results obtained were as follows: 1. The maximum output of 6 and 7.5 kW engine was 7.43 kW and 7.85 kW respectively. When flywheel weight was reduced from 32.2 kg to 24.2 kg, output power of the engine was increased 0.27 kW in 6 kW engine and increased 0.39 kW in 7.5 kW engine. 2. The fuel consumption ratio was decreased from 300.8 to 296.8 g/kW-hr in 6 kW engine and decreased from 313.6 to 312.8 g/kW-hr in 7.5 kW engine when the flywheel weight was reduced from 32.2 kg to 24.2 kg. 3. The mechanical efficiencies of the engine was increased from 76.1 to 76.8% in 6 kW engine and increased from 76.7 to 77.0% in 7.5 kW engine when the flywheel weight was reduced from 32.2 kg to 24.2 kg. 4. When the flywheel weight was reduced from 32.2 kg to 24.2 kg, a tendency of a little decrease of vibration at X- and Z-axis in 6 kW engine and of a little increase of vibration at Y-axis in 6 kW engine and all directions in 7.5 kW engine was observed. 5. Motoring losses was decreased from 2.33 to l.76 kW in 6 kW engine and decreased from 2.46 to 1.84 kW in 7.5 kW engine when the flywheel weight was reduced from 32.2 kg to 24.2 kg. From the above results and the flywheel weight calculated theoretically, it was recommendable that the flywheel weight should be reduced about 7 kg in 6 kW engine and about 10 kg in 7.5 kW engine, respectively.

  • PDF

Evaluations of Spectral Analysis of in vitro 2D-COSY and 2D-NOESY on Human Brain Metabolites (인체 뇌 대사물질에서의 In vitro 2D-COSY와 2D-NOESY 스펙트럼 분석 평가)

  • Choe, Bo-Young;Woo, Dong-Cheol;Kim, Sang-Young;Choi, Chi-Bong;Lee, Sung-Im;Kim, Eun-Hee;Hong, Kwan-Soo;Jeon, Young-Ho;Cheong, Chae-Joon;Kim, Sang-Soo;Lim, Hyang-Sook
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.1
    • /
    • pp.8-19
    • /
    • 2008
  • Purpose : To investigate the 3-bond and spatial connectivity of human brain metabolites by scalar coupling and dipolar nuclear Overhauser effect/enhancement (NOE) interaction through 2D- correlation spectroscopy (COSY) and 2D- NOE spectroscopy (NOESY) techniques. Materials and Methods : All 2D experiments were performed on Bruker Avance 500 (11.8 T) with the zshield gradient triple resonance cryoprobe at 298 K. Human brain metabolites were prepared with 10% $D_2O$. Two-dimensional spectra with 2048 data points contains 320 free induction decay (FID) averaging. Repetition delay was 2 sec. The Top Spin 2.0 software was used for post-processing. Total 7 metabolites such as N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), lutamine (Gln), glutamate (Glu), myo-inositol (Ins), and lactate (Lac) were included for major target metabolites. Results : Symmetrical 2D-COSY and 2D-NOESY pectra were successfully acquired: COSY cross peaks were observed in the only 1.0-4.5 ppm, however, NOESY cross peaks were observed in the 1.0-4.5 ppm and 7.9 ppm. From the result of the 2-D COSY data, cross peaks between the methyl protons ($CH_3$(3)) at 1.33 ppm and methine proton (CH(2)) at 4.11 ppm were observed in Lac. Cross peaks between the methylene protons (CH2(3,$H{\alpha}$)) at 2.50ppm and methylene protons ($CH_2$,(3,$H_B$)) at 2.70 ppm were observed in NAA. Cross peaks between the methine proton (CH(5)) at 3.27 ppm and the methine proton (CH(4,6)) at 3.59 ppm, between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(4,6)) at 3.59 ppm, and between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(2)) at 4.05 ppm were observed in Ins. From the result of 2-D NOESY data, cross peaks between the NH proton at 8.00 ppm and methyl protons ($CH_3$) were observed in NAA. Cross peaks between the methyl protons ($CH_3$(3)) at 1.33 ppm and methine proton (CH(2)) at 4.11 ppm were observed in Lac. Cross peaks between the methyl protons (CH3) at 3.03 ppm and methylene protons (CH2) at 3.93 ppm were observed in Cr. Cross peaks between the methylene protons ($CH_2$(3)) at 2.11 ppm and methylene protons ($CH_2$(4)) at 2.35 ppm, and between the methylene protons($CH_2$ (3)) at 2.11 ppm and methine proton (CH(2)) at 3.76 ppm were observed in Glu. Cross peaks between the methylene protons (CH2 (3)) at 2.14 ppm and methine proton (CH(2)) at 3.79 ppm were observed in Gln. Cross peaks between the methine proton (CH(5)) at 3.27 ppm and the methine proton (CH(4,6)) at 3.59 ppm, and between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(2)) at 4.05 ppm were observed in Ins. Conclusion : The present study demonstrated that in vitro 2D-COSY and NOESY represented the 3-bond and spatial connectivity of human brain metabolites by scalar coupling and dipolar NOE interaction. This study could aid in better understanding the interactions between human brain metabolites in vivo 2DCOSY study.

  • PDF