• Title/Summary/Keyword: Yucheon granites

Search Result 8, Processing Time 0.022 seconds

A Geochemical Study on the Chindong and Yucbeon - Eonyang Granites in Relation to Mineralization (진동화강암 및 유천-언양화강암의 광화작용에 관한 지화학적 연구)

  • Lee, Jae Yeong
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.21-34
    • /
    • 1989
  • Chindong granites are classified into granodiorite, tonalite and quartz-diorite, and Yucheon - Eonyang granites into monzo-granite by the Streckeisen diagram. These granitic rocks of Cretaceous age show trend of calc-alkaline magma, and the magmatic evolution from basic to acidic rocks is consistant with the general crystallization path of the Cretaceous granitic rocks in the Gyeongsang basin. On the basis of petrological and petrochemical data, variation of major elements (K, Na, Ca, Mg) and trace elements (Rb, Sr, Ba) including ore metals (Cu, Pb, Zn) in the Cretaceous granitic rocks were studied in detail in order to investigate geochemical difference of the granitic rocks in relation to mineralization between Cu province and Pb-Zn province in the Gyeongsang basin. There is clear difference in content of the major elements between Chindong granites and Yucheon-Eonyang granites : Chindong granites have low content of K (1.62%) and Na (2.53%), and high content of Ca (3.75%) and Mg (1.42%) whereas Yucheon-Eonyang granites have high content of K (3.56-3.60%), and low content of Ca (0.96-0.26%) and Mg (0.26-0.21%). There is also clear difference in content of trace lithophile elements between Chindong granites and Yucheon-Eonyang, granites : Chindong granites have low content of Rb (86ppm) and Ba (330ppm), and high content of Sr (405ppm) while Yucheon-Eonyang, granites have high content of Rb (144-161ppm) and Ba (983-1030ppm), and low content of Sr (157-136ppm). The lithophile trace elements of Rb and Sr vary with close relationship to major elements of K and Ca, respectively. Therefore, Chindong granites are much easily distinguished from Yucheon-Eonyang granites by using relationship of K with Rb and Ca with Sr : K<3%, Rb<100ppm, Ca<2% and Sr>200ppm for Chindong granites, and K>3%, Rb>100ppm, Ca<2%, and Sr<200ppm for Yucheon-Eonyang granites. There is not clear difference in content of trace ore metals between Chindong granites and Yucheon-Eonyang granites : Chindong granites of the Cu province have low Cu content (15ppm) which is nearly equal to 13-14ppm of Yucheon-Eonyang granites of the Pb-Zn province, and Yucheon-Eonyang granites have Pb content (29-27ppm) which is rather lower than 37ppm of Chindong granites. But Cu is anomalously high in the mineralized part of Chindong granites in Gunbuk-Haman area, and Zn is apparently higher in Yucheon-Eonyang granites (51-37ppm) than in Chindong granites (29ppm). K/Pb ratio is also c1early distinguishable between Chindong granites (<850) and Yucheon-Eonyang granites (>850). Thus, it may be possible to apply geochemical difference of the granites to distinguish whether a Cretaceous granitic body is Cu related rock or Pb-Zn related rock, and whether it belongs to Cu province or Pb-Zn province in the Gyeongsang basin.

  • PDF

A Geochemical Study on Relationship between Granites and Metallogenic Provinces in the Yucheon Basin (유천분지내 화강암류와 광상구의 관계에 대한 지화학적 연구)

  • Lee, Jae Yeong;Kim, Sang Wook;Kim, Young Ki;Koh, In Seok;Chang, Tae Woo
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.143-159
    • /
    • 1990
  • There is clear difference in content of the major and trace elements between Masan granites of Cu province and Yucheon-Eonyang granites of Pb-Zn province in the Yucheon Basin: the former has low content in K(2.08%), Na(2.42%) and Rb (127ppm), and high content in Ca(3.75%), Mg(1.42%) and Sr(304ppm) whereas the latter has high content in K(3.56-3.60%), Na(3.05-3.06%) and Rb(144-161ppm), and low content in Ca(0.62-0.96), Mg(0.21-0.26%) and Sr(136-157ppm). Ore metals in granites also show slight difference between two areas: Masan granites have slightly higher Cu content(18ppm) than Yucheon-Eonyang granites(13, 14ppm), whereas Yucheon granite(29ppm) has slightly higher Pb content than Masan granites(25ppm). Thus, it may be possible to apply geochemical difference of the granites to distinguish whether a Cretaceous granite mass is related to copper or lead-zinc mineralization, and whether it belongs Cu-province or Pb-Zn province in the Yucheon Basin.

  • PDF

A Geochemical Study on Jindong Granites in Relation to Copper Ore Deposits in Gyeongsang Basin (경상분지내 동광상 관련 진동화강암류에 대한 지화학적 연구)

  • Lee, Jae Yeong;Lee, Jin Kook;Park, Beob Jeong;Lee, In Ho;Kim, Sang Wook
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.161-170
    • /
    • 1994
  • Jindong Granites are plotted mainly in the region of granodiorite~diorite of the Streckeisen's diagram, while Yucheon-Eonyang Granites and Onjonri Granites in the region of monzo-granite and monzo-granite~granodiorite, respectively. Jindong Granites show a differenciation trend of calc-alkaline magma, and its magmatic evolution from intermediate to acidic rocks, which might form mineralizing solution, is consistant with the general path of the Cretaceous granitic rocks including Yucheon-Eonyang Granites and Onjongri Granites. The differenciation index (D.I.) is 35~80 for Jindong Granites, which is lower than 85~95 of Yucheon-Eonyang Granites and is partly overlapped by 67~84 of Onjongri Granites. There is clear difference in content of some major and trace elements between Jindong Granites of Cu province and the other granitic rocks of Pb-Zn and Mo provinces. Between these metallogenic provicnes, Cu content is high in Jindong Granites near Haman-Gunbuk mineralized zone, while Pb and Zn are relatively abundant in Yucheon-Eonyang Granites and Mo in Onjongri Granites. Therefore, Jindong Granites of the Cu province are distinguishable by chemical compositions and their related geochemical characteristics from the other Cretaceous granitic rocks of Pb-Zn and Mo provinces. However, the content of Cu and Cl in biotite is applicable to distinguish a productive phase from a barren phase of Jindong Granites, because Cu and Cl show a trend to be concentrated in biotite of Jindong Gratites in the Haman-Gunbuk mineralized zone.

  • PDF

A Geochemical Study on Ulsan Granite in Relation to Iron Ore Deposits in the Gyeongsang Basin (경상분지내 철광상 관련 울산화강암에 대한 지화학적 연구)

  • Lee, Jae Yeong;Kim, Sang Wook;Kim, Young Ki
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.133-143
    • /
    • 1992
  • Ulsan granite is plotted mainly in the region of syeno-granite of the Streckeisen diagram, which consists with those of iron related granites in the area of Kimhae-Mulgum, while Chindong granites and Yucheon-Eonyang granites are plotted in the regions of granodiorite-diorite and monzo-granite, respectively. These granites show a differentiation trend of calc-alkaline magma, and their magmatic evolution from intermediate to acidic rocks is consistant with the general crystallization path of the Cretaceous granitic rocks in the Gyeongsang basin. The difference index (D.I.) is 70~90 for Ulsan granite, which lies between 35~80 of Chindong granites and 85~95 of Yucheon-Eonyang granites. These granites are distinguishable from each other by variation patterns of chemical elements. For instance, there is clear difference in content of some major and trace elements between Ulsan granite and Cu-related Chindong granites: Ulsan granite has high content of K (2.68%) and Ba (636 ppm), and low content of Ca (1.07%), Mg (0.50%) and Sr (185 ppm), whereas Chindong granites has less content of K (1.62%) and Ba (382 ppm), and higher content of Ca (3.75%), Mg (1.42%) and Sr (405 ppm). However, the content of Ulsan granite overlaps partly those of Yucheon-Eonyang granites, which are apparently dividable from Chindong granites. There is an usual trend that Cu content is high in Chindong granites of Cu province and Zn content is higher in Yucheon-Eonyang granites of Pb-Zn province. But it is unusual that Cu and Zn are higher in Ulsan granite (34 ppm, 74 ppm) than in Chindong granites (15 ppm, 22 ppm) and Yucheon-Eonyang granites (14 ppm, 43 ppm). This may be due to the reason that Ulsan granite is productive and Cu-Zn minerals are associated with iron ores. Productive Chindong granites in Haman-Gunbug area and Yuchon-Eonyang granites near ore deposits have higher content of Cu and Zn than Ulsang granite. Therefore, it is expected that chemical variation patterns of granites are applicable to distinguish mineral commodity of ore deposits (iron, copper, or lead-zinc) related with the granites in the Gyeongsasng basin.

  • PDF

Mineralization of Hydrothermal Ore Deposits in Relation to Chemical Variation of the Cretaceous Granitoids in the Gyeongsang Basin (경상분지내 열수광상의 광화작용과 백악기 화강암류의 화학성분 변화와의 관계)

  • Lee, Jae Yeong;Lee, Jin Kook;Lee, In Ho;Kim, Sang Wook
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.363-373
    • /
    • 1994
  • The Cretaceous granitic rocks show differences in rock types and chemical compositions according to metallogenic provinces of copper, lead zinc and molybdenum in the Gyeongsang basin. Jindong granites are of granodiorite~quartz diorite~diorite in Cu-province; Makeunsan/Yucheon-Eonyang granites, granodiorite~granite in Pb Zn-province; Onjeongri-Yeonghae granites, granodiorite~quartz diorite in Mo-province, and there is a trend that productive masses are less differenciated than barren masses in Cu and Pb-Zn provinces whereas productive masses are more differenciated than barren masses in Mo province. Metallogenic provinces are distinguishable by variations of major and trace elements. The Cretaceous granitic rocks are highest in the content of Ca, Mg and other basic major elements and lowest in the content of K and Na in Cu provicne; the variation trends are vice versa in Pb-Zn province. Trace elements such as Rb and Sr show variations related to K and Ca, and metallogenic provinces are also distinguishable by their ratios. The granitic rocks of Mo province have intermediate content of major and trace elements, but are clearly distinguishable from Jindong granites and partly overlapped by Yucheon-Eonyang granites. Chlorine content in biotites is higher in a productive mass than in a barren mass in Cu province. Therefore, the mineralogical and chemical compositions are applicable as geochemical index to distinguish the types of mineralizaion, and productive and barren masses of the Cretaceous granitic rocks in the Gyeongsang basin.

  • PDF

Characteristics and Stratigraphic Implications of Granitic Rock Fragments in the Pyroclastic Rocks, SE Jinhae, Korea (진해시 남동부 화성쇄설암 내 화강암편의 특징과 층서적 의미)

  • Cho, Hyeong-Seong;Kim, Jong-Sun;Lee, Jeong-Hwan;Jeong, Jong-Ok;Son, Moon;Kim, In-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.116-128
    • /
    • 2007
  • Detailed geological mapping, petrographic study, analyses of geochemistry and magnetic susceptibility, and K-Ar dating were carried out in order to determine the origin, age, and stratigraphic implications of granitic rock fragments in the pyroclastic rocks, SE Jinhae city, southern part of the Gyeongsang Basin. As a result, it was found that the area is composed of volcanics and tuffaceous sediments of the Yucheon Group, Bulguksa granites, pyroclastics bearing granitic rock fragments, $basalt{\sim}basaltic$ andesite, and rhyolite in ascending stratigraphic order. The granitic rock fragments in the pyroclastic rocks are divided into granodiorite and biotite granite, which have approximately the same characteristics as the granodiorite and the biotite granite of the Bulguksa granites, respectively, in and around the study area including color, grain size, mineral composition, texture (perthitic and micrographic textures), intensity of magnetic susceptibility (magnetite series), and geochemical features (calc-alkaline series and REE pattern). This leads to the conclusion that the rock fragments originated from the late Cretaceous Bulguksa granites abundantly distributed in and around the study area, but not from the basement rocks of the Yeongnam massif or the Jurassic granites. Based on relative and absolute ages of various rocks in the study area, the pyroclastics bearing granitic rock fragments are interpreted to have erupted between 52 and 16 Ma, i.e. during the Eocene and early Miocene. These results indicate that the various volcanisms, acidic to basic in composition, occurred after the intrusion of the Bulguksa granites, contrary to the general stratigraphy of the Gyeongsang Basin. Very detailed and cautious mapping together with relative and absolute age determinations are, thus, necessary in order to establish reliable stratigraphy of the Yucheon Group in other areas of the Gyeongsang Basin.

Hydrogeochemical Characteristics, Occurrence, and Distribution of Natural Radioactive Materials (Uranium and Radon) in Groundwater of Gyeongnam and Gyeongbuk Provinces (경상남북도 지하수 중 자연방사성물질 우라늄과 라돈의 산출특징과 함량분포에 대한 수리지화학적 연구)

  • Cho, Byong Wook;Choo, Chang Oh;Yun, Uk;Lee, Byeong Dae;Hwang, Jae Hong;Kim, Moon Su
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.551-574
    • /
    • 2014
  • The occurrence, distribution, and hydrogeochemical characteristics of uranium and radon in groundwater within different lithologies in Gyeongnam and Gyeongbuk provinces were investigated. A total of 201 groundwater samples from sedimentary rocks taking a large portion of the geology and from igneous rocks taking a small portion of the geology were analyzed and examined using factor analysis. Their radionuclide levels were used to construct detailed concentration maps. The groundwater types, defined using a Piper diagram, are mainly Ca-$HCO_3$ with less Na-$HCO_3$. Among the samples, one site exceeds $30{\mu}g/L$ of uranium (i.e., the maximum contaminant level of the USEPA) and three sites exceed 4,000 pCi/L of radon (i.e., the alternative maximum contaminant level). No samples were found to exceed the 15 pCi/L level of gross alpha or the 5 pCi/L level of radium. The concentration of uranium ranges from 0.02 to $53.7{\mu}g/L$, with a mean of $1.56{\mu}g/L$, a median of $0.47{\mu}g/L$, and a standard deviation of $4.3{\mu}g/L$. The mean concentrations of uranium for the different geological units increase in the following order: Shindong Group, Granites, Hayang Group, Yucheon Group, and Tertiary sedimentary rocks. The concentration of radon ranges from 2 to 8,740 pCi/L, with an mean of 754 pCi/L, a median of 510 pCi/L, and a standard deviation of 907 pCi/L. The mean radon concentrations for the investigated geological units increase in the following order: Granites, Yucheon Group, Tertiary sedimentary rocks, Hayang Group and Shindong Group. According to the factor analysis for each geological unit, uranium and radon behave independently of each other with no specific correlation. However, radionuclides show close relationships with some components. Regional investigations of radionuclides throughout the country require an integrated approach that considers the main lithological units as well as administrative districts.