• 제목/요약/키워드: Yttrium

검색결과 402건 처리시간 0.022초

Spin Wave Interference in Magnetic Nanostructures

  • Yang, Hyun-Soo;Kwon, Jae-Hyun;Mukherjee, Sankha Subhra;Jamali, Mahdi;Hayashi, Masamitsu
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2011년도 자성 및 자성재료 국제학술대회
    • /
    • pp.7-8
    • /
    • 2011
  • Although yttrium iron garnet (YIG) has provided a great vehicle for the study of spin waves in the past, associated difficulties in film deposition and device fabrication using YIG had limited the applicability of spin waves to practical devices. However, microfabrication techniques have made it possible to characterize both the resonant as well as the travelling characteristics of spin waves in permalloy (Py). A variety of methods have been used for measuring spin waves, including Brillouin light scattering (BLS), magneto-optic Kerr effect (MOKE), vector network analyzer ferromagnetic resonance (VNA-FMR), and pulse inductive microwave magnetometry (PIMM). PIMM is one of the most preferred methodologies of measuring travelling spin waves. In this method, an electrical impulse is applied at one of two coplanar waveguides patterned on top of oxide-insulated Py, producing a local disturbance in the magnetization of the Py. The resulting disturbance travels down the Py in the form of waves, and is inductively picked up by the other coplanar waveguide. We investigate the effect of the pulse width of excitation pulses on the generated spin wave packets using both experimental results and micromagnetic simulations. We show that spin wave packets generated from electrical pulses are a superposition of two separate spin wave packets, one generated from the rising edge and the other from the falling edge, which interfere either constructively or destructively with one another, depending upon the magnitude and direction of the field bias conditions. A method of spin wave amplitude modulation is also presented by the linear superposition of spin waves. We use interfering spin waves resulting from two closely spaced voltage impulses for the modulation of the magnitude of the resultant spin wave packets.

  • PDF

Design of a Microthruster using Laser-Sustained Solid Propellant Combustion

  • Kakami, Akira;Masaki, Shinichiro;Horisawa, Hideyuki;Tachibana, Takeshi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.605-610
    • /
    • 2004
  • Solid propellants allow thrusters to be light-weight, com-pact and robust because they require neither tank nor valve, Moreover, the solid propellant will not leak, spill or slosh. Consequently, the solid propellant thruster is one of the potential candidates for the microthruster. On the other hand, the control of the solid propellant combustion is difficult, since the conventional solid propellant continues to bum until all the stored propellant is consumed. Although particular devices like thrust reverser were designed to control the combustion, these devices were rarely used in the practical rocket motors. These devices rise thruster weight as well as complicate the thruster operation. In this study, a solid propellant microthruster using laser sustained combustion was designed in order to develop a high-efficiency microthruster overcoming the previously-mentioned difficulty. This designed thruster has semiconductor lasers and non-self-combustible solid propellants in addition to the conventional solid propellant thruster. In this designed thruster, the semiconductor laser controls the combustion of the non-self-combustible solid propellant. In order to demonstrate that the solid propellant combustion is controllable with laser, some non-self-combustible solid propellants were irradiated with the laser at a back-pressure of about 1㎪. A 40-W class Neodymium Yttrium Aluminum Garnet (ND:YAG) laser was used as a tentative alternate to the semiconductor laser. This experiment has shown that the solid propellant combustion was controllable with 10- W class laser irradiation.

  • PDF

Surface Analysis of Fluorine-Plasma Etched Y-Si-Al-O-N Oxynitride Glasses

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.38.1-38.1
    • /
    • 2009
  • Plasma etching is an essential process for electronic device industries and the particulate contamination during plasma etching has been interested as a big issue for the yield of productivity. The oxynitride glasses have a merit to prevent particulate contamination due to their amorphous structure and plasma etching resistance. The YSiAlON oxynitride glasses with increasing nitrogen content were manufactured. Each oxynitride glasses were fluorine-plasma etched and their plasma etching rate and surface roughness were compared with reference materials such as sapphire, alumina and quartz. The reinforcement mechanism of plasma etching resistance of the YSiAlON glasses studied by depth profiling at plasma etched surface using electron spectroscopy for chemical analysis. The plasma etching rate decreased with nitrogen content and there was no selective etching at the plasma etched surface of the oxynitride glasses. The concentration of silicon was very low due to the generation of SiF4 very volatile byproduct and the concentration of aluminum and yttrium was relatively constant. The elimination of silicon atoms during plasma etching was reduced with increasing nitrogen content because the content of the nitrogen was constant. And besides, the concentration of oxygen was very low on the plasma etched surface. From the study, the plasma etching resistance of the glasses may be improved by the generation of nitrogen related structural groups and those are proved by chemical composition analysis at plasma etched surface of the YSiAlON oxynitride glasses.

  • PDF

방사능탐지용 CAYS 함침 이중구조 폴리설폰막의 형상 및 특성에 제막공정의 습도가 미치는 영향 (Vapor Exposure Effect of a Casting Solution on the Embedding and Radioactive Detection of CAYS in Double-layered Polysulffne Film)

  • 한명진;남석태;이근우;서범경
    • 멤브레인
    • /
    • 제15권3호
    • /
    • pp.198-205
    • /
    • 2005
  • 방사능 오염도 측정에 사용하기 위한 이중구조 고분자막이 폴리설폰과 세륨활성화된 이트륨실리케이트(CAYS)를 이용하여 제조되었다. 제조된 막은 순수 고밀도 고분자 지지층과 이에 제막된 고분자 용액의 상전환 공정에 의해 고형화된 CAYS 함침 활성층의 이중구조로 구성된다. 제막공정에서 대기방치 공정이 생략되었을 때 CAYS를 포함하는 활성층은 전형적인 비대칭 구조를 지니며, CAYS 입자들이 고분자 구조 사이에 박혀있는 형상을 지닌다. 제막공정에서 대기에 방치하는 시간이 증가할수록 막의 형상은 스폰지 구조를 띠며 CAYS는 고분자 구조로부터 분리되어 막 내부에 셀 같은 공간에 밀집되어 존재함을 보였다. 한편, 두 충 사의 계면형상은 고분자 고형화 과정에서의 상전환 속도와 밀접한 관련되었으며, 대기방치 시간의 증가에 따라 계면의 구분이 뚜렷하게 나타나지 않았다. 방사능 탐지 특성에서 스폰지 구조를 지니는 막의 고분자 구조는 방사성핵종이 통과할 수 없는 밀집된 형상을 지니면서 탐지효율의 감소를 초래하는 것으로 나타났다.

YIG ($Y_3$$Fe_5$O_{12}$)의 미세구조 및 자성 특성에 대한 $SrTiO_3$첨가 영향 (The Effects of $SrTiO_3$ Addition on the Microstructure and Magnetic Properties of YIG)

  • 장학진;윤석영;김태옥
    • 한국재료학회지
    • /
    • 제11권3호
    • /
    • pp.203-206
    • /
    • 2001
  • SrTiO$_3$첨가량 및 소결온도에 따른 YIG 소결체의 미세구조 및 자기적 특성변화에 대하여 조사하였다. 소량의 SrTiO$_3$소결재를 첨가한 결과 소결체의 격자상수는 약간 증가하였으며, 이는 소결시 $Y^{+3}$, Fe$^{+3}$이온이 이온반경이 상대적으로 큰 Sr$^{+2}$, Ti$^{+4}$이온으로 치환되었기 때문인 것으로 추정된다. SrTiO$_3$소결재를 0.2mo1% 첨가하고, 142$0^{\circ}C$에서 소결한 소결체의 밀도는 이론밀도의 98%이상의 치밀화를 얻을 수 있었다. 상온에서의 포화자화값(M$_s$)은 SrTiO$_3$소결재의 첨가량이 증가함에 따라 약간 감소하였으나 큰 변화는 없었다. 더욱이 온도에 따른 보자력 (H$_c$)의 변화는 없었다.

  • PDF

Fabrication of NiO-Y:BaZrO3 Composite Anode for Thin Film-Protonic Ceramic Fuel Cells using Tape-Casting

  • Bae, Kiho;Noh, Ho-Sung;Jang, Dong Young;Kim, Manjin;Kim, Hyun Joong;Hong, Jongsup;Lee, Jong-Ho;Kim, Byung-Kook;Son, Ji-Won;Shim, Joon Hyung
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.320-324
    • /
    • 2015
  • Optimization of the fabrication process of NiO-yttrium doped barium zirconate (BZY) composite anode substrates using tape-casting for high performance thin-film protonic ceramic fuel cells (PCFCs) is investigated. The anode substrate is composed of a tens of microns-thick anode functional layer laminated over a porous anode substrate. The macro-pore structure of the anode support is induced by micron-scale polymethyl methacrylate (PMMA) pore formers. Thermal gravity analysis (TGA) and a dilatometer are used to determine the polymeric additive burn-out and sintering temperatures. Crystallinity and microstructure of the tape-cast NiO-BZY anode are analyzed after the sintering.

리튬이온이차전지용 구형 Li4Ti5O12 음극 합성 및 Y와 Nb 도핑에 따른 전기화학적 특성 (Preparation of Spherical Li4Ti5O12 and the Effect of Y and Nb Doping on the Electrochemical Properties as Anode Material for Lithium Secondary Batteries)

  • 지미정;권용진;김은경;박태진;정성헌;최병현
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.659-662
    • /
    • 2012
  • Yttrium (Y) and niobium (Nb) doped spherical $Li_4Ti_5O_{12}$ were synthesized to improve the energy density and electrochemical properties of anode material. The synthesized crystal was $Li_4Ti_5O_{12}$, the particle size was less than $1{\mu}m$ and the morphology was spherical and well dispersed. The Y and Nb optimal doping amounts were 1 mol% and 0.5 mol%, respectively. The initial capacity of the dopant discharge and charge capacity were respectively 149mAh/g and 143 mAh/g and were significantly improved compared to the undoped condition at 129 mAh/g. Also, the capacity retention of 0.2 C/5 C was 74% for each was improved to 94% and 89%. It was consequently found that Y and Nb doping into the $Li_4Ti_5O_{12}$ matrix reduces the polarization and resistance of the solid electrolyte interface (SEI) layer during the electrochemical reaction.

Y2O3 함량과 소결조건에 따른 상압소결 AlN 세라믹스의 열전도도 고찰 (Observation of Thermal Conductivity of Pressureless Sintered AlN Ceramics under Control of Y2O3 Content and Sintering Condition)

  • 나상문;고신일;이상진
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.368-372
    • /
    • 2011
  • Aluminum nitride (AlN) has excellent thermal conductivity, whereas it has some disadvantage such as low sinterability. In this study, the effects of sintering additive content and sintering condition on thermal conductivity of pressureless sintered AlN ceramics were examined on the variables of 1~3 wt% sintering additive ($Y_2O_3$) content at $1900^{\circ}C$ in $N_2$ atmosphere with holding time of 2~10 h. All AlN specimens showed higher thermal conductivity as the $Y_2O_3$ content and holding time increase. The formation of secondary phases (yttrium aluminates) by reaction of $Y_2O_3$ and $Al_2O_3$ from AlN surface promoted the thermal conductivity of AlN specimens, because the secondary phases could reduce the oxygen contents in AlN lattice. Also, thermal conductivity was increased by long sintering time because of the uniform distribution and the elimination of the secondary phases at the grain boundary by the evaporation effect during long holding time. A carbothermal reduction reaction was also affected on the thermal conductivity. The thermal conductivity of AlN specimens sintered at $1900^{\circ}C$ for 10 h showed 130~200W/mK according to the content of sintering additive.

$Y_2O_3$ 첨가에 따른 ZnO:Pr 바리스터의 미세구조 및 전기적 특성에 관한 연구 (A Study on the Microstructure and Electrical Properties of ZnO:Pr Varistor with $Y_2O_3$Additive)

  • 남춘우;정순철;이외천
    • 한국전기전자재료학회논문지
    • /
    • 제11권1호
    • /
    • pp.48-56
    • /
    • 1998
  • Pr\ulcornerO\ulcorner-based ZnO varistors were fabricated in the range of $Y_2$O$_3$additive content from 0.5 to 4.0mol%, and its microstructure and electrical properties were investigated. Yttrium was distributed nearly in the grain boundaries and the cluster phase formed at nodal point but more in cluster phase. The average grain size was decreased markedly from 34.9 to 8.6${\mu}{\textrm}{m}$ with increasing $Y_2$O$_3$additive content. It is believed that the decrease of grain size is attributed to the formation of cluster phase and the weakening of driving force for liquid sintering. As a result, $Y_2$O$_3$was acted as the inhibitor of the grain growth. With increasing $Y_2$O$_3$additive content, the varistor voltage, the activation energy, and the nonlinear exponent increased whereas the leakage current decreased, especially 4.0mol% $Y_2$O$_3$-added varistor exhibited very good I-V characteristics; nonlinear exponent 87.42 and leakage current 46.77nA. On the other hand, as $Y_2$O$_3$additive content increases, the varistor showed tendency of the salient decrease for donor concentration and the increase for barrier height. Conclusively, it is estimated that ZnO:Pr varistor compositions added more than 2.0mol% $Y_2$O$_3$are to be used to fabricate useful varistors.

  • PDF

Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

  • Jung, Yang-Il;Park, Dong-Jun;Park, Jung-Hwan;Kim, Hyun-Gil;Yang, Jae-Ho;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.218-222
    • /
    • 2018
  • An oxide-dispersion-strengthened (ODS) layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide ($Y_2O_3$)-coated Zircaloy-4 tube to induce the penetration of $Y_2O_3$ particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at $380^{\circ}C$, and from 385 to 470 MPa at $500^{\circ}C$. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to $830^{\circ}C$ at a heating rate of $5^{\circ}C/s$ and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties.