• 제목/요약/키워드: Youtube comment

검색결과 2건 처리시간 0.015초

앙상블 머신러닝 모델 기반 유튜브 스팸 댓글 탐지 (Ensemble Machine Learning Model Based YouTube Spam Comment Detection)

  • 정민철;이지현;오하영
    • 한국정보통신학회논문지
    • /
    • 제24권5호
    • /
    • pp.576-583
    • /
    • 2020
  • 이 논문은 최근 엄청난 성장을 하고 있는 유튜브의 댓글 중 스팸 댓글을 판별하는 기법을 제안한다. 유튜브에서는 광고를 통한 수익 창출이 가능하기 때문에 인기 동영상에서 자신의 채널이나 동영상을 홍보하거나 영상과 관련 없는 댓글을 남기는 스패머(spammer)들이 나타났다. 유튜브에서는 자체적으로 스팸 댓글을 차단하는 시스템을 운영하고 있지만 여전히 제대로 차단하지 못한 스팸 댓글들이 있다. 따라서, 유튜브 스팸 댓글 판별에 대한 관련 연구들을 살펴 보고 인기 동영상인 싸이, 케이티 페리, LMFAO, 에미넴, 샤키라의 뮤직비디오 댓글 데이터에 6가지 머신러닝 기법(의사결정나무, 로지스틱 회귀분석, 베르누이 나이브 베이즈, 랜덤 포레스트, 선형 커널을 이용한 서포트 벡터 머신, 가우시안 커널을 이용한 서포트 벡터 머신)과 이들을 결합한 앙상블 모델로 스팸 탐지 실험을 진행하였다.

소셜미디어 뉴스를 이용한 관심 이슈 연구 (A Study on Interest Issues Using Social Media New)

  • 곽노영;이문봉
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제32권2호
    • /
    • pp.177-190
    • /
    • 2023
  • Purpose Recently, as a new business marketing tool, short form content focused on fun and interest has been shared as hashtags. By extracting positive and negative keywords from media audiences through comment analysis of social media news, various stakeholders aim to quickly and easily grasp users' opinions on major news. Design/methodology/approach YouTube videos were searched using the YouTube Data API and the results were collected. Video comments were crawled and implemented as HTML elements, and the collection results were checked on the web page. The collected data consisted of video thumbnails, titles, contents, and comments. Comments were word tokenized with the R program, comparing positive and negative dictionaries, and then quantifying polarity. In addition, social network analysis was conducted using divided positive and negative comments, and the results of centrality analysis and visualization were confirmed. Findings Social media users' opinions on issue news were confirmed by analyzing and visualizing the centrality of keywords through social network analysis by dividing comments into positive and negative. As a result of the analysis, it was found that negative objective reviews had the highest effect on information usefulness. In this way, previous studies have been reaffirmed that online negative information has a strong effect on personal decision-making. Corporate marketers will analyze user comments on social network services (SNS) to detect negative opinions about products or corporate images, which will serve as an opportunity to satisfy customers' needs.