• Title/Summary/Keyword: Yolov5 model

Search Result 99, Processing Time 0.026 seconds

Performance Evaluation of YOLOv5s for Brain Hemorrhage Detection Using Computed Tomography Images (전산화단층영상 기반 뇌출혈 검출을 위한 YOLOv5s 성능 평가)

  • Kim, Sungmin;Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.25-34
    • /
    • 2022
  • Brain computed tomography (CT) is useful for brain lesion diagnosis, such as brain hemorrhage, due to non-invasive methodology, 3-dimensional image provision, low radiation dose. However, there has been numerous misdiagnosis owing to a lack of radiologist and heavy workload. Recently, object detection technologies based on artificial intelligence have been developed in order to overcome the limitations of traditional diagnosis. In this study, the applicability of a deep learning-based YOLOv5s model was evaluated for brain hemorrhage detection using brain CT images. Also, the effect of hyperparameters in the trained YOLOv5s model was analyzed. The YOLOv5s model consisted of backbone, neck and output modules. The trained model was able to detect a region of brain hemorrhage and provide the information of the region. The YOLOv5s model was trained with various activation functions, optimizer functions, loss functions and epochs, and the performance of the trained model was evaluated in terms of brain hemorrhage detection accuracy and training time. The results showed that the trained YOLOv5s model is able to provide a bounding box for a region of brain hemorrhage and the accuracy of the corresponding box. The performance of the YOLOv5s model was improved by using the mish activation function, the stochastic gradient descent (SGD) optimizer function and the completed intersection over union (CIoU) loss function. Also, the accuracy and training time of the YOLOv5s model increased with the number of epochs. Therefore, the YOLOv5s model is suitable for brain hemorrhage detection using brain CT images, and the performance of the model can be maximized by using appropriate hyperparameters.

Development of YOLOv5s and DeepSORT Mixed Neural Network to Improve Fire Detection Performance

  • Jong-Hyun Lee;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.320-324
    • /
    • 2023
  • As urbanization accelerates and facilities that use energy increase, human life and property damage due to fire is increasing. Therefore, a fire monitoring system capable of quickly detecting a fire is required to reduce economic loss and human damage caused by a fire. In this study, we aim to develop an improved artificial intelligence model that can increase the accuracy of low fire alarms by mixing DeepSORT, which has strengths in object tracking, with the YOLOv5s model. In order to develop a fire detection model that is faster and more accurate than the existing artificial intelligence model, DeepSORT, a technology that complements and extends SORT as one of the most widely used frameworks for object tracking and YOLOv5s model, was selected and a mixed model was used and compared with the YOLOv5s model. As the final research result of this paper, the accuracy of YOLOv5s model was 96.3% and the number of frames per second was 30, and the YOLOv5s_DeepSORT mixed model was 0.9% higher in accuracy than YOLOv5s with an accuracy of 97.2% and number of frames per second: 30.

Performance Evaluation of YOLOv5 Model according to Various Hyper-parameters in Nuclear Medicine Phantom Images (핵의학 팬텀 영상에서 초매개변수 변화에 따른 YOLOv5 모델의 성능평가)

  • Min-Gwan Lee;Chanrok Park
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • The one of the famous deep learning models for object detection task is you only look once version 5 (YOLOv5) framework based on the one stage architecture. In addition, YOLOv5 model indicated high performance for accurate lesion detection using the bottleneck CSP layer and skip connection function. The purpose of this study was to evaluate the performance of YOLOv5 framework according to various hyperparameters in position emission tomogrpahy (PET) phantom images. The dataset was obtained from QIN PET segmentation challenge in 500 slices. We set the bounding box to generate ground truth dataset using labelImg software. The hyperparameters for network train were applied by changing optimization function (SDG, Adam, and AdamW), activation function (SiLU, LeakyRelu, Mish, and Hardwish), and YOLOv5 model size (nano, small, large, and xlarge). The intersection over union (IOU) method was used for performance evaluation. As a results, the condition of outstanding performance is to apply AdamW, Hardwish, and nano size for optimization function, activation function and model version, respectively. In conclusion, we confirmed the usefulness of YOLOv5 network for object detection performance in nuclear medicine images.

SSD PCB Component Detection Using YOLOv5 Model

  • Pyeoungkee, Kim;Xiaorui, Huang;Ziyu, Fang
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.24-31
    • /
    • 2023
  • The solid-state drive (SSD) possesses higher input and output speeds, more resistance to physical shock, and lower latency compared with regular hard disks; hence, it is an increasingly popular storage device. However, tiny components on an internal printed circuit board (PCB) hinder the manual detection of malfunctioning components. With the rapid development of artificial intelligence technologies, automatic detection of components through convolutional neural networks (CNN) can provide a sound solution for this area. This study proposes applying the YOLOv5 model to SSD PCB component detection, which is the first step in detecting defective components. It achieves pioneering state-of-the-art results on the SSD PCB dataset. Contrast experiments are conducted with YOLOX, a neck-and-neck model with YOLOv5; evidently, YOLOv5 obtains an mAP@0.5 of 99.0%, essentially outperforming YOLOX. These experiments prove that the YOLOv5 model is effective for tiny object detection and can be used to study the second step of detecting defective components in the future.

Comparison analysis of YOLOv10 and existing object detection model performance

  • Joon-Yong Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.85-92
    • /
    • 2024
  • In this paper presents a comparative analysis of the performance between the latest object detection model, YOLOv10, and its previous versions. YOLOv10 introduces NMS-Free training, an enhanced model architecture, and an efficiency-centric design, resulting in outstanding performance. Experimental results using the COCO dataset demonstrate that YOLOv10-N maintains high accuracy of 39.5% and low latency of 1.84ms, despite having only 2.3M parameters and 6.7G floating-point operations (FLOPs). The key performance metrics used include the number of model parameters, FLOPs, average precision (AP), and latency. The analysis confirms the effectiveness of YOLOv10 as a real-time object detection model across various applications. Future research directions include testing on diverse datasets, further model optimization, and expanding application scenarios. These efforts aim to further enhance YOLOv10's versatility and efficiency.

Fundamental Function Design of Real-Time Unmanned Monitoring System Applying YOLOv5s on NVIDIA TX2TM AI Edge Computing Platform

  • LEE, SI HYUN
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.22-29
    • /
    • 2022
  • In this paper, for the purpose of designing an real-time unmanned monitoring system, the YOLOv5s (small) object detection model was applied on the NVIDIA TX2TM AI (Artificial Intelligence) edge computing platform in order to design the fundamental function of an unmanned monitoring system that can detect objects in real time. YOLOv5s was applied to the our real-time unmanned monitoring system based on the performance evaluation of object detection algorithms (for example, R-CNN, SSD, RetinaNet, and YOLOv5). In addition, the performance of the four YOLOv5 models (small, medium, large, and xlarge) was compared and evaluated. Furthermore, based on these results, the YOLOv5s model suitable for the design purpose of this paper was ported to the NVIDIA TX2TM AI edge computing system and it was confirmed that it operates normally. The real-time unmanned monitoring system designed as a result of the research can be applied to various application fields such as an security or monitoring system. Future research is to apply NMS (Non-Maximum Suppression) modification, model reconstruction, and parallel processing programming techniques using CUDA (Compute Unified Device Architecture) for the improvement of object detection speed and performance.

YOLOv5 in ESL: Object Detection for Engaging Learning (ESL의 YOLOv5: 참여 학습을 위한 객체 감지)

  • John Edward Padilla;Kang-Hee Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.45-46
    • /
    • 2023
  • In order to improve and promote immersive learning experiences for English as a Second Language (ESL) students, the deployment of a YOLOv5 model for object identification in videos is proposed. The procedure includes collecting annotated datasets, preparing the data, and then fine-tuning a model using the YOLOv5 framework. The study's major objective is to integrate a well-trained model into ESL instruction in order to analyze the effectiveness of AI application in the field.

  • PDF

Dynamic characteristics monitoring of wind turbine blades based on improved YOLOv5 deep learning model

  • W.H. Zhao;W.R. Li;M.H. Yang;N. Hong;Y.F. Du
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.469-483
    • /
    • 2023
  • The dynamic characteristics of wind turbine blades are usually monitored by contact sensors with the disadvantages of high cost, difficult installation, easy damage to the structure, and difficult signal transmission. In view of the above problems, based on computer vision technology and the improved YOLOv5 (You Only Look Once v5) deep learning model, a non-contact dynamic characteristic monitoring method for wind turbine blade is proposed. First, the original YOLOv5l model of the CSP (Cross Stage Partial) structure is improved by introducing the CSP2_2 structure, which reduce the number of residual components to better the network training speed. On this basis, combined with the Deep sort algorithm, the accuracy of structural displacement monitoring is mended. Secondly, for the disadvantage that the deep learning sample dataset is difficult to collect, the blender software is used to model the wind turbine structure with conditions, illuminations and other practical engineering similar environments changed. In addition, incorporated with the image expansion technology, a modeling-based dataset augmentation method is proposed. Finally, the feasibility of the proposed algorithm is verified by experiments followed by the analytical procedure about the influence of YOLOv5 models, lighting conditions and angles on the recognition results. The results show that the improved YOLOv5 deep learning model not only perform well compared with many other YOLOv5 models, but also has high accuracy in vibration monitoring in different environments. The method can accurately identify the dynamic characteristics of wind turbine blades, and therefore can provide a reference for evaluating the condition of wind turbine blades.

Development of AI and IoT-based smart farm pest prediction system: Research on application of YOLOv5 and Isolation Forest models (AI 및 IoT 기반 스마트팜 병충해 예측시스템 개발: YOLOv5 및 Isolation Forest 모델 적용 연구)

  • Mi-Kyoung Park;Hyun Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.771-780
    • /
    • 2024
  • In this study, we implemented a real-time pest detection and prediction system for a strawberry farm using a computer vision model based on the YOLOv5 architecture and an Isolation Forest Classifier. The model performance evaluation showed that the YOLOv5 model achieved a mean average precision (mAP 0.5) of 78.7%, an accuracy of 92.8%, a recall of 90.0%, and an F1-score of 76%, indicating high predictive performance. This system was designed to be applicable not only to strawberry farms but also to other crops and various environments. Based on data collected from a tomato farm, a new AI model was trained, resulting in a prediction accuracy of over 85% for major diseases such as late blight and yellow leaf curl virus. Compared to the previous model, this represented an improvement of more than 10% in prediction accuracy.

Detecting Jaywalking Using the YOLOv5 Model

  • Kim, Hyun-Tae;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.300-306
    • /
    • 2022
  • Currently, Korea is building traffic infrastructure using Intelligent Transport Systems (ITS), but the pedestrian traffic accident rate is very high. The purpose of this paper is to prevent the risk of traffic accidents by jaywalking pedestrians. The development of this study aims to detect pedestrians who trespass using the public data set provided by the Artificial Intelligence Hub (AIHub). The data set uses training data: 673,150 pieces and validation data: 131,385 pieces, and the types include snow, rain, fog, etc., and there is a total of 7 types including passenger cars, small buses, large buses, trucks, large trailers, motorcycles, and pedestrians. has a class format of Learning is carried out using YOLOv5 as an implementation model, and as an object detection and edge detection method of an input image, a canny edge model is applied to classify and visualize human objects within the detected road boundary range. In this study, it was designed and implemented to detect pedestrians using the deep learning-based YOLOv5 model. As the final result, the mAP 0.5 showed a real-time detection rate of 61% and 114.9 fps at 338 epochs using the YOLOv5 model.