• 제목/요약/키워드: YoloV5

검색결과 43건 처리시간 0.024초

A Study on Fruit Quality Identification Using YOLO V2 Algorithm

  • Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • 제9권1호
    • /
    • pp.190-195
    • /
    • 2021
  • Currently, one of the fields leading the 4th industrial revolution is the image recognition field of artificial intelligence, which is showing good results in many fields. In this paper, using is a YOLO V2 model, which is one of the image recognition models, we intend to classify and select into three types according to the characteristics of fruits. To this end, it was designed to proceed the number of iterations of learning 9000 counts based on 640 mandarin image data of 3 classes. For model evaluation, normal, rotten, and unripe mandarin oranges were used based on images. We as a result of the experiment, the accuracy of the learning model was different depending on the number of learning. Normal mandarin oranges showed the highest at 60.5% in 9000 repetition learning, and unripe mandarin oranges also showed the highest at 61.8% in 9000 repetition learning. Lastly, rotten tangerines showed the highest accuracy at 86.0% in 7000 iterations. It will be very helpful if the results of this study are used for fruit farms in rural areas where labor is scarce.

휴먼포즈 인식을 적용한 무형문화재 탈춤 동작 디지털전환 (The digital transformation of mask dance movement in intangible cultural asset based on human pose recognition)

  • 강수형;박성건;박광영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.678-680
    • /
    • 2023
  • 본 연구는 2022년 유네스코 인류무형유산 대표목록에 등재된 탈춤 동작을 디지털화하여 후속 세대에게 정보를 제공하는 것을 목적으로 한다. 데이터 수집은 국가무형문화제로 지정된 탈춤 단체 13개, 시도무형문화재 단체 5개에 소속된 무형문화재, 전승자 39명이 관성식 모션 캡처 장비를 착용하고, 8대의 카메라를 이용하여 수집하였다. 데이터 가공은 바운딩박스를 수행하였고, 탈춤동작 추정은 YOLO v8을 사용하였고 탈춤 동작 분류는 YOLO v8에 CNN모델을 결합하여 130개의 탈춤을 분류하였다. 연구결과, mAP-50은 0.953, mAP50-95는 0.596, Accuracy 70%를 달성하였다. 향후 학습용 데이터셋 구축량이 늘어나고, 데이터 품질이 개선된다면 탈춤 분류 성능은 더욱 개선될 것이라 기대한다.

딥러닝 기반 조류 탐지 모형의 입력 이미지 자료 특성에 따른 성능 변화 분석 (Analysis of performance changes based on the characteristics of input image data in the deep learning-based algal detection model)

  • 김준오;백지원;김종락;박정수
    • 한국습지학회지
    • /
    • 제25권4호
    • /
    • pp.267-273
    • /
    • 2023
  • 조류는 생태계를 구성하는 중요한 요소이다. 그러나 남조류의 과도한 성장은 하천환경에 다양한 악영향을 발생시키고 규조류는 상수원과 정수장 공정관리에 영향을 미친다. 지속적이고 효율적인 조류 관리를 위해 조류 모니터링이 중요하다. 본 연구에서는 You Only Look Once (YOLO)의 최신 알고리즘 YOLO v8을 사용하여 조류경보제 기준에 사용하는 유해 남조류 4종과 정수처리공정에 영향이 큰 규조류 1종 총 5종의 이미지를 분류하는 이미지 분류모형을 구축하였다. 기본모형의 mAP는 64.4로 분석되었다. 모형의 학습에 사용된 원본 이미지에 회전, 확대, 축소를 수행하여 이미지의 다양성을 높인 5가지 모형을 구축하여 입력자료로 사용된 이미지의 구성에 따른 모형 성능의 변화를 비교하였다. 분석결과 회전, 확대, 축소를 모두 적용한 모형이 mAP 86.5로 가장 좋은 성능을 보이는 것을 확인하였다. 이미지의 회전만을 적용한 모형, 회전과 확대를 적용한 모형, 이미지의 회전과 축소만를 적용한 모형의 mAP는 각각 85.3, 82.3, 83.8로 분석되었다.

드론 스트리밍 영상 이미지 분석을 통한 실시간 산불 탐지 시스템 (Forest Fire Detection System using Drone Streaming Images)

  • Yoosin Kim
    • 한국항행학회논문지
    • /
    • 제27권5호
    • /
    • pp.685-689
    • /
    • 2023
  • The proposed system in the study aims to detect forest fires in real-time stream data received from the drone-camera. Recently, the number of wildfires has been increasing, and also the large scaled wildfires are frequent more and more. In order to prevent forest fire damage, many experiments using the drone camera and vision analysis are actively conducted, however there were many challenges, such as network speed, pre-processing, and model performance, to detect forest fires from real-time streaming data of the flying drone. Therefore, this study applied image data processing works to capture five good image frames for vision analysis from whole streaming data and then developed the object detection model based on YOLO_v2. As the result, the classification model performance of forest fire images reached upto 93% of accuracy, and the field test for the model verification detected the forest fire with about 70% accuracy.

영상 처리를 이용한 IoT 기반 웨어러블 스마트 안전장비 (IoT based Wearable Smart Safety Equipment using Image Processing)

  • 홍현기;김상율;박재완;길현빈;정목동
    • 대한임베디드공학회논문지
    • /
    • 제17권3호
    • /
    • pp.167-175
    • /
    • 2022
  • With the recent expansion of electric kickboards and bicycle sharing services, more and more people use them. In addition, the rapid growth of the delivery business due to the COVID-19 has significantly increased the use of two-wheeled vehicles and personal mobility. As the accident rate increases, the rule related to the two-wheeled vehicles is changed to 'mandatory helmets for kickboards and single-person transportation' and was revised to prevent boarding itself without driver's license. In this paper, we propose a wearable smart safety equipment, called SafetyHelmet, that can keep helmet-wearing duty and lower the accident rate with the communication between helmets and mobile devices. To make this function available, we propose a safe driving assistance function by notifying the driver when an object that interferes with driving such as persons or other vehicles are detected by applying the YOLO v5 object detection algorithm. Therefore it is intended to provide a safer driving assistance by reducing the failure rate to identify dangers while driving single-person transportation.

BIM 모델 활용을 위한 360° 카메라 이미지의 객체 탐지 알고리즘 정확성 비교 연구 (A Study on the Accuracy Comparison of Object Detection Algorithms for 360° Camera Images for BIM Model Utilization)

  • 주현철;이주형;임종원;이재희;강인석
    • 토지주택연구
    • /
    • 제14권3호
    • /
    • pp.145-155
    • /
    • 2023
  • 최근 건설산업 분야에 BIM 기술의 활용이 보편화되면서 3D 모델과 실제 시공 부위의 오류 확인 등을 위해 다양한 객체 탐지 알고리즘들이 활용되고 있다. 객체 탐지 기술은 건축물, 교량, 터널 등 건설시설물의 종류에 따라 객체 특성이 상이하므로 객체 탐지 기술도 적절한 방법을 사용할 필요가 있다. 또한 객체 탐지를 위해서는 초기 객체 이미지가 있어야 하며 이를 위해서도 드론, 스마트폰 등 다양한 방법으로 이미지 취득이 가능하다. 본 연구에서는 철도와 도로 시설의 터널 부위에 대하여 초기 이미지 구축을 위해 터널 내부 촬영에 최적화된 360° 카메라를 이용하여 이미지를 촬영하고, 촬영된 이미지로부터 실제 객체를 탐지하기 위한 객체 탐지 방법론으로 YOLO 알고리즘, SSD 알고리즘 및 R-CNN 알고리즘을 적용하여 방법론별 객체 탐지의 정확도를 비교 분석한다. 분석 결과 Faster R-CNN 알고리즘이 SSD, YOLO v5 알고리즘에 비해 높은 인식률 및 mAP 값을 가졌으며 인식률들의 최소·최대 값의 차이가 작아 균등한 검측 능력을 나타냈다. 이러한 연구는 철도와 도로 시설공사에 BIM 적용이 확산되고 있는 점을 고려하면 360° 카메라의 활용 방법 확대와 유지보수를 위한 터널 시설 부위의 객체 탐지 방법론 적용에 활용될 수 있다.

객체 탐지를 통한 간 종양 검출 (Detecting liver lesion using Object detection)

  • 류세열;유재천
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.343-344
    • /
    • 2022
  • 간암에는 크게 두 종류가 있는데 하나는 간에서 생긴 종양이 악성종양으로 진행된 것이고 다른 하나는 다른 장기에서 생긴 암이 간으로 전이되는 것이다. 본 논문에서는 간에서 생긴 종양이 악성종양으로 진행되는 것을 조기 발견하고 막고자 Object Detect 모델인 YOLO v5의 다섯 가지 모델을 비교하여 악성 종양으로의 발전 가능성이 있는 간의 lesion을 찾아보았다.

  • PDF

딥러닝 기반 영상 분석 알고리즘을 이용한 실시간 작업자 안전관리 시스템 개발 (Real-time Worker Safety Management System Using Deep Learning-based Video Analysis Algorithm)

  • 전소연;박종화;윤상병;김영수;이용성;전지혜
    • 스마트미디어저널
    • /
    • 제9권3호
    • /
    • pp.25-30
    • /
    • 2020
  • 본 논문에서는 산업 시설에서 작업자의 안전을 실시간으로 감시하는 딥러닝 기반 영상 분석 시스템을 구현하는 데 목적을 둔다. 작업자의 복장을 안전모, 안전조끼, 안전벨트 착용 여부에 따라 총 여섯 가지의 클래스로 나누고, 총 5,307개의 영상을 학습데이터로 이용하였다. 실험은 속도와 정확도가 준수한 YOLO v4를 이용하였으며, 총 645장의 영상에 대해 학습 반복 수에 따른 가중치를 적용했을 때의 mAP를 비교함으로써 수행되었다. 학습 반복 수 6,000에서의 mAP가 60.13%로 제일 높았으며, 테스트셋이 가장 많은 클래스의 AP가 가장 높음을 확인하였다. 추후 데이터셋과 객체 검출 모델을 최적화함으로써, 정확도와 속도를 개선할 예정이다.

국민안전을 위한 강력범죄 수배차량 검거시스템 (The System of Arresting Wanted Vehicles for Violent Crimes for Public Safety)

  • 지문세;기혜정;기창민;문범섭;박성건
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1762-1769
    • /
    • 2021
  • 본 연구의 최종 목표는 블랙박스, 스마트폰, CCTV 등으로부터 수집된 영상에서 수배차량이 범죄차량인지 여부를 분석할 수 있는 시스템을 개발하는 것이다. 데이터 수집은 자체 개발된 블랙박스를 이용하였다. 본 연구에 활용된 데이터는 차량 유형 8개(트럭, RV, 승용차, 승합차, SUV, 버스, 스포츠카, 전기차)와 차량 모델 434개 등 총 83,753건의 데이터를 사용하였다. YOLO v5를 이용한 차량인식 결과, mAP가 80%로 나타났다. 자체 개발한 블랙박스를 이용하여 ReXNet으로 차량 모델을 식별한 결과, 정확도는 99%로 나타났다. 이러한 결과는 데이터 라벨링의 정확도를 개선하는 것이 차량인식 성능 향상에 도움이 된다는 것을 의미한다.

물고기의 성장도를 예측하는 FGRS(Fish Growth Regression System) (FGRS(Fish Growth Regression System), Which predicts the growth of fish)

  • 원성권;심용보;손수락;정이나
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.347-353
    • /
    • 2023
  • 양식장에서 물고기의 성장을 측정하는 작업은 아직도 사람의 손이 많이 가는 방식을 사용한다. 이 방식은 많은 노동력이 필요하고, 물고기가 스트레스를 받아 폐사율에 악영향을 준다. 이러한 문제를 해결하기 위해 물고기의 성장도를 자동화하기 위한 시스템 FGRS(Fish Growth Regression System)를 제안한다. FGRS는 두 개의 모듈로 구성된다. 첫째는 Yolo v8 기반의 물고기를 디텍팅하는 모듈이고, 둘째는 물고기 영상 데이터를 CNN 기반의 신경망 모델을 이용하여 물고기의 성장도를 예측하는 모듈로 구성된다. 시뮬레이션 결과 학습전에는 예측 오차가 평균 134.2일로 나왔지만 학습 이후 평균 오차가 39.8일 까지 감소했다. 본 논문에서 제안한 시스템을 이용해 생육일을 예측하여 물고기의 성장예측을 활용해 양식장에서의 자동화에 기여할 수 있고, 많은 노동력 감소와 비용 절감 효과를 가져 올 수 있을 것이라 기대한다.