In order to further improve the accuracy and time efficiency of behavior recognition in intelligent monitoring scenarios, a human behavior recognition algorithm based on YOLO combined with LSTM and CNN is proposed. Using the real-time nature of YOLO target detection, firstly, the specific behavior in the surveillance video is detected in real time, and the depth feature extraction is performed after obtaining the target size, location and other information; Then, remove noise data from irrelevant areas in the image; Finally, combined with LSTM modeling and processing time series, the final behavior discrimination is made for the behavior action sequence in the surveillance video. Experiments in the MSR and KTH datasets show that the average recognition rate of each behavior reaches 98.42% and 96.6%, and the average recognition speed reaches 210ms and 220ms. The method in this paper has a good effect on the intelligence behavior recognition.
본 논문은 유튜브에 업로드 된 운동 영상을 시청하는 사람의 얼굴 영역을 YoloV3을 이용하여 얼굴 영상에서 눈 및 입술영역을 검출하는 방법을 연구하여, YoloV3은 딥 러닝을 이용한 물체 검출 방법으로 기존의 특징 기반 방법에 비해 성능이 우수한 것으로 알려져 있다. 본 논문에서는 영상을 다차원적으로 분리하고 클래스 확률(Class Probability)을 적용하여 하나의 회귀 문제로 접근한다. 영상의 1 frame을 입력 이미지로 CNN을 통해 텐서(Tensor)의 그리드로 나누고, 각 구간에 따라 객체인 경계 박스와 클래스 확률을 생성해 해당 구역의 눈과 입을 검출한다. 검출된 이미지 감성 분석을 통해, 운동 영상 중 하이라이트 부분을 자동으로 선별하는 시스템을 설계하였다.
일반적으로 딥러닝 기반의 객체 검출(Object Detection)기법은 합성곱 신경망(Convolutional Neural Network, CNN)을 통해 입력된 영상의 특징(Feature)을 추출하여 이를 통해 객체 검출을 수행한다. 최근 자연어 처리 분야에서 획기적인 성능을 보인 트랜스포머(Transformer)가 영상 분류, 객체 검출과 같은 컴퓨터 비전 작업을 수행하는데 있어 경쟁력이 있음이 드러나고 있다. 본 논문에서는 YOLOv4-CSP의 CSP 블록을 개선한 one-stage 방식의 객체 검출 네트워크를 제안한다. 개선된 CSP 블록은 트랜스포머(Transformer)의 멀티 헤드 어텐션(Multi-Head Attention)과 CSP 형태의 공간 피라미드 풀링(Spatial Pyramid Pooling, SPP) 연산을 기반으로 네트워크의 Backbone과 Neck에서의 feature 학습을 돕는다. 본 실험은 MSCOCO test-dev2017 데이터 셋으로 평가하였으며 제안하는 네트워크는 YOLOv4-CSP의 경량화 모델인 YOLOv4s-mish에 대하여 평균 정밀도(Average Precision, AP)기준 2.7% 향상된 검출 정확도를 보인다.
객체 인식 연구에 있어서 딥러닝 기반의 사람 인식에 있어서 많은 연구들이 공개되고 있다. 특히 화재사고에 있어서 연기로 인해 가시성이 떨어져 인명구조에 어려움이 발생한다. 이에 열화상 카메라와 딥러닝을 통해 사람을 인식하는 기술이 연구되고 있다. 기존 연구에서는 열화상 카메라와 YOLO 딥러닝을 통해 사람을 인식하는데 95%의 성능을 보였지만, YOLO는 그리드 셀에서 하나의 분류만하기 때문에 물체에 가려진 사람을 판별하는데 정확도가 낮았다. 본 논문에서는 이와 같은 한계를 극복하기 위해 기존 Faster R-CNN 알고리즘을 사용한다. 신체부위 Guided Attention mechanism을 사용하여 가중치를 준 Feature Map을 RPN에 적용시켜 학습모델을 구현한다면 더 높은 정확도를 얻을 수 있다. 향후 본 논문에서 제안하는 기법은 많은 실험과 다양한 데이터 셋을 통해 실질적인 검증을 할 예정이다.
본 연구는 2022년 유네스코 인류무형유산 대표목록에 등재된 탈춤 동작을 디지털화하여 후속 세대에게 정보를 제공하는 것을 목적으로 한다. 데이터 수집은 국가무형문화제로 지정된 탈춤 단체 13개, 시도무형문화재 단체 5개에 소속된 무형문화재, 전승자 39명이 관성식 모션 캡처 장비를 착용하고, 8대의 카메라를 이용하여 수집하였다. 데이터 가공은 바운딩박스를 수행하였고, 탈춤동작 추정은 YOLO v8을 사용하였고 탈춤 동작 분류는 YOLO v8에 CNN모델을 결합하여 130개의 탈춤을 분류하였다. 연구결과, mAP-50은 0.953, mAP50-95는 0.596, Accuracy 70%를 달성하였다. 향후 학습용 데이터셋 구축량이 늘어나고, 데이터 품질이 개선된다면 탈춤 분류 성능은 더욱 개선될 것이라 기대한다.
보행자 교통사고의 경우 사고 발생 시 사망사고로 연결되는 위험성이 있다. 국내 지능형 교통시스템(ITS)은 질 좋은 교통 인프라를 구축하고 있음에도 불구하고, 거의 교통정보 수집에만 이용되고 있어, 위험상황 발생 시 지능적인 위험 요소 분류가 이루어지지 않고 있다. 본 연구에서 제안하는 시스템의 주요 구성 요소인 CNN 기반의 보행자 탐지 분류 모델의 경우 제한적인 환경에서 설치 운영되는 것을 가정하여 임베디드 시스템 기반으로 구현되었다. 기존 YOLO의 인공신경망 모델을 개선하여 My-Tiny-Model3라는 새로운 모델을 생성하였고, 20,000번의 반복 학습 기준으로 평균 정확도 86.29%와 21.1 fps의 실시간 탐지 속도 결과를 보였다. 그리고, 이러한 탐지 시스템을 기반으로 하여 ITS 체계와 연계 가능한 시스템 구현 및 프로토콜 연동 시나리오를 구성하였다. 본 연구를 통해 기존 ITS 체계와 연동하는 보행자 사고 방지 시스템을 구현한다면, 새로운 인프라 구축비용을 절감하고 보행자 교통사고 발생률을 줄이는 데 도움이 될 것이다. 또한, 기존의 시스템 감시인력 소요에 따른 비용 또한 줄일 수 있을 것으로 기대된다.
Object detection is applied in various field. Autonomous driving, surveillance, OCR(optical character recognition) and aerial image etc. We will look at the algorithms that are using to object detect. These algorithms are divided into two methods. The one is R-CNN algorithms [2], [5], [6] which based on region proposal. The other is YOLO [7] and SSD [8] which are one stage object detector based on regression/classification.
Vehicle orientation detection is a challenging task because the orientations of vehicles can vary in a wide range in captured images. The existing methods for oriented vehicle detection require too much computation time to be applied to a real-time system. We propose Rotate YOLO, which has a set of anchor boxes with multiple scales, ratios, and angles to predict bounding boxes. For estimating the orientation angle, we applied angle-related IoU with CIoU loss to solve the underivable problem from the calculation of SkewIoU. Evaluation results on three public datasets DLR Munich, VEDAI and UCAS-AOD demonstrate the efficiency of our approach.
최근에는 딥러닝 기술의 발달로 물체 인식 및 검출에 관한 기술들 또한 발탄하고 있다. 검출에 관한 여러 기법(Faster R-CNN, R-CNN, YOLO, SSD 등) 중 SSD는 다른 기법들과는 다르게 높은 정확도와 빠른 속도가 특징이다. 동시에 여러 detection network들도 쉽게 이용이 가능하다. 본 논문에서는 detection netowork중 Mobilenet V2 network를 이용하여 SSD와 결합해 모델을 훈련하고, TensorRT engine을 이용하여 더 빠른 속도로 검출할 수 있는 방법에 대해 논의한다. 이 방법을 통해 face detector를 만들어 여러 상황에서 쓰일 수 있도록 한다.
서울특별시는 25개 구청에 7만5천여대의 CCTV가 설치되어 있다. 각 구청은 CCTV관제를 위한 관제센터를 구축하고 시민의 안전을 위해 24시간 CCTV영상관제를 수행하고 있다. 서울특별시는 유관기관과 MOU를 체결하여 긴급/응급 상황에 신속한 대응이 가능하도록 구청의 CCTV영상을 제공하여 시민이 안전한 스마트시티통합플랫폼을 구축하고 있다. 본 논문에서는, 서울특별시 관할구청에서 사건 발생 시, CCTV영상에 대해 인공지능 DNN 기반의 Template Matching 기술, MLP 알고리즘과 CNN 기반으로 YOLO SPP DNN모델을 사용하여 사람과 차량을 판별하여 도주경로를 예측한다. 또한, 관할구청을 이탈하여, 차량 및 사람이 도주 시, 인접 구청에 영상정보와 상황정보를 자동전파 하도록 설계한다. 인공지능을 활용한 도주경로 예측 및 추적 시스템은 스마트시티 통합플랫폼을 전국으로 확장시킬 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.