• Title/Summary/Keyword: Yoke tube

Search Result 15, Processing Time 0.018 seconds

Analysis of the Transient State of the Squirrel Cage Induction Motor by Means of the Magnetic Equivalent Circuit Method

  • Jeong Jong-Ho;Lee Eun-Woong;Cho Hyun-Kil
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.34-38
    • /
    • 2005
  • The finite element method is very flexible for new shapes and provides flux distribution, magnetomotive force, eddy currents, and torques. However, it requires lengthy computational time in order to achieve desired accuracy. The magnetic equivalent circuit method takes less computation time than the finite element method. Therefore, the finite element method is mainly used to confirm the completed design. The magnetic equivalent circuit method is convenient for complicated analysis of the transient state of the induction motor. The magnetic equivalent circuit method is restricted to only one direction of magnetic flux. In this paper, the construction elements (that is, stator iron, rotor iron, yoke, air gap, etc.) of the squirrel cage induction motor were represented by a flux tube and the air gap magnetomotive force was calculated by the magnetic equivalent circuit method. Starting transient torque and phase current of the squirrel cage induction motor were verified by the theoretical calculation and the experiment.

A Study on the Development of High Torque Composite Propeller Shaft (고토크 복합재 프로펠러 샤프트 개발에 관한 연구)

  • 박지상;황경정;김태욱;윤형석
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.22-26
    • /
    • 2002
  • The goal of this study is to replace the current forward 2-piece propeller shaft of 8 ton large truck made of steel with 1-piece composite propeller shaft. A low cost Glass/Epoxy composite propeller shafts were successfully developed, which satisfy requirements such as the capacity of static torque transfer, fatigue strength and bending natural frequency. Devising secure joining method of a composite tube and metal yoke was the most critical issue in successful development of a high torque composite propeller shaft. In this study, joining method using thermal interference fit was adopted for composite to metal joint. Optimum conditions of heating temperature and interference level of thermal interference fit were determined from thermal stress analysis using 3D finite element method. Static torsion test, fatigue test, RPM and balance test were performed to verify the design.

  • PDF

A Study on the Vibration Characteristic of Slip-In Tube Propeller Shaft in FR Automobile (후륜 구동 자동차의 슬립 인 튜브 프로펠러 샤프트의 진동특성에 관한 연구)

  • Lee, H.J.;Hwang, J.H.;Kim, S.S.;Byun, J.M.;Kim, E.Z.;Cha, D.J.;Kang, S.W.;Byun, W.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.309-313
    • /
    • 2006
  • Many researchers have studied on the lightness of automobile. These researches are such as a body shell, sub frame, fuel tank, engine etc. The transmission Part is a magnitude one in the aspect of weight. A drive shaft (propeller shaft) transmits the engine power to rear differential gear assembly. It is used in the compact car that is a single drive shaft. But in the case of long body cars such as SUV (Sports Utility Vehicle), truck and large vehicle, two or three divided drive shaft are used to prevent the vibration damage from a drive shaft that has been taken high torsion and rotation. This multi-divided drive shaft structure is so heavy because it is assembled by yoke, center bearing and solid spline axis. When the rear axle move up and down, the spline shaft adjust the variation of a length between the transmission and rear axle gearbox. In this paper, it is studied in the experimental method that is a bending vibration characteristic of slip in tube shaped propeller shaft. This type propeller shaft is developed to combine the spline axis with drive shaft and can be light in weight of transmission part.

  • PDF

Digital Video Warping for Convergence of Projection TV Receivers (프로젝션 TV에서의 광학적 왜곡 보정 알고리즘)

  • Hwang, Kyu-Young;Shin, Hyun-Chool;Woong Seo;Song, Woo-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.535-538
    • /
    • 2001
  • In this paper, we present a novel method to solve the inevitable RGB beam mismatch problem in projection TV receivers. Conventional methods solve the mismatch problem by directly controlling the cathode ray tube (CRT) using the convergence yoke (CY). Unlike conventional methods, the proposed method is based on digital video processing using image warping techniques. Firstly RGB beam projection paths are mathematically modeled. Then based on the modeling, the input video signal to CRT is prewarped so that RGB beams are landed at the same point on the screen. Since the proposed method is based on a digital video processing instead of using CY, it can outperform the conventional method in terms of quality and cost. The experimental results with a real 60´projection TV demonstrate that the proposed method indeed produces converged images on the projection TV screen.

  • PDF

Development and Construction of low Magnetic Field Control System for Analysis of Magnetic Field Effect in the Deflection Yoke (브라운관의 자기장 영향 분석용 저자기장 제어 장치의 설계 및 제작)

  • Park, Po-Gyu;Kim, Young-Gyun;Shin, Suk-Woo;Choi, Hyung-Ho;Kim, Tae-Ik;Jung, Dong-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.6
    • /
    • pp.251-256
    • /
    • 2003
  • We have developed the quality analysis system for magnetic field effect of cathode-ray tube that is used a monitor, TV and medical appliance. We designed and constructed the large 3-axis square coil (2 m length) system for the generation of 3-component magnetic field using power supply, magnetometer and computer below 0.2 mT range. The coil constant is 30.31 ${\mu}$T, 29.73 ${\mu}$T and 30.51 ${\mu}$T for the X, Y and Z axis square coil respectively. The magnetic field resolution was 0.01 T. The uniformity of magnetic field was measured within 1 % in the range of 12 cm.