• Title/Summary/Keyword: Yielding of material

Search Result 238, Processing Time 0.03 seconds

Phenomenological Theory of Superconductivity and Magnetism in Ho$_{1-x}Dy_xNi_2B_2C$

  • Doh, Hyeon-Jin;Sigrist, Manfred;Cho, B.K.;Lee, Sung-Ik
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.196-199
    • /
    • 1999
  • The coexistence of the superconductivity and magnetism in the Ho1-xDyxNi2B2C is studied by using Ginzburg-Landau theory. This material violates the standard do Gennes scaling showing the coexistence and complex interplay of superconducting and magnetic order yielding an anomalous phase diagram. We propose a phenomenological model which includes two magnetic and two superconducting order parameters accounting for the multi-band structure of this material. We describe the magnetic fluctuations and order and demonstrate that they lead to anomalous behavior of the upper critical field. The doping dependence of Tc in Ho1-xDyxNi2B2C showing a reentrance behavior are analyzed yielding a very good agreement with experimental data.

  • PDF

Investigating the use of wollastonite micro fiber in yielding SCC

  • Sharma, Shashi Kant;Ransinchung, G.D.;Kumar, Praveen
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.123-143
    • /
    • 2018
  • Self compacting concrete (SCC) has good flowability, passability and segregation resistance because of voluminous cementitious material & high coarse aggregate to fine aggregate ratio, and high free water availability. But these factors make it highly susceptible to shrinkage. Fibers are known to reduce shrinkage in concrete mixes. Until now for conserving cement, only pozzolanic materials are admixed in concrete to yield a SCC. Hence, this study compares the use of wollastonite micro fiber (WMF), a cheap pozzolanic easily processed raw mineral fiber, and flyash in yielding economical SCC for rigid pavement. Microsilica was used as a complimentary material with both admixtures. Since WMF has large surface area ($827m^2/kg$), is acicular in nature; therefore its use in yielding SCC was dubious. Binary and ternary mixes were constituted for WMF and flyash, respectively. Paste mixes were tested for compatibility with superplasticizer and trials were performed on a normal concrete mix of flexural strength 4.5 MPa to yield SCC. Flexural strength test and restrained shrinkage test were performed on those mixes, which qualified self compacting criteria. Results revealed that WMF admixed pastes have high water demand, and comparable setting times to flyash mixes. Workability tests showed that 20% WMF with microsilica (5-7.5%) is efficient enough in achieving SCC and higher flexural strength than normal concrete at 90 days. Also, stress rate due to shrinkage was lesser and time duration for final strain was higher in WMF admixed SCC which encourages its use in yielding a SCC than pozzolanic materials.

Performance of Several Jerusalem Artichoke Clones ( Helianthus tuberosus L. ) Screened for Adaptibility in Korea (돼지감자 수집클론의 우리나라 환경 적응성)

  • 임근발
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.3
    • /
    • pp.305-314
    • /
    • 1997
  • Nineteen clones of Jerusalem Artichoke (JA) from several countries were collected through the series of experiments about JA started in 1979. Collected clones were screened for adaptibility in Korea and showed introduction path way. The results about an ecological response of collected clones including flowering, tuberization, biomass production, sugar contents and grouping of collected clones for use of genetic material were as follows; 1. Nineteen clones collected were ffom Korea(2), Japan(l), USA(Z), Canada(2), France(4), Germany(7), and USSR(1). 2. Through the characteristics of top collected clones were divided to the types of branch-non branch, short and long plant height, and early and late maturity. Tuber characteristics were mainly grouped to the types of white skin color-violet skin color, clusters-single unit, round-elongate, and knotty-smooth. 3. Total sugar yields 6-om top at flowering time were 490 - 630kgl10a and 6-om the tuber were 420 -490 kg/ IOa through the high yielding clones. The top-high yielding clones were Mammoth French White, Fuseau 60, Nahodka, and JA3. The higher tuber yields were got from the clones of D- 19, Colombia, Bianka and Mammoth French White. 4. Collected clones were grouped to three and first group was characterized to early maturity and short plant height and second group to medium and finally, third group to late maturity and high plant height. 5. High yielding of top was 6-om the I group of early maturity and short plant height and high yielding of tuber h m III group of late maturity and high plant height.

  • PDF

Analysis of Plastic Hinge on Pile-Bent Structure with Varying Diameters (변단면 단일 현장타설말뚝의 소성힌지 영향분석)

  • Ahn, Sangyong;Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.149-158
    • /
    • 2010
  • In this study, the behavior of Pile-Bent structure with varying diameters subjected to lateral loads were evaluated by a load transfer approach. An analytical method based on the beam-column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic, yielding) and P-${\Delta}$ effect. For an effective analysis of behavior Pile-Bent structure, the bending moment and fracture lateral load of material were evaluated. And special attention was given to lateral behavior of Pile-Bent structures depending on reinforcing effect of materials and ground conditions. Based on the parametric study, it is shown that the maximum bending moment is located within a depth (plastic hinge) approximately 1~3D (D: pile diameter) below ground surface when material non-linearity and P-${\Delta}$ effect are considered. And distribution of the lateral deflections and bending moments on a pile are highly influenced by the effect of yielding. It is also found that this method considering material yielding behavior and P-${\Delta}$ effect can be effectively used to perform the preliminary design of Pile-bent structures.

Development of the Simplified Analysis Model for RC Structures Considering Plastic Behavior (소성거동을 고려한 RC 구조물의 간략화 해석모델에 관한 연구)

  • 정연주;유영찬
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.361-371
    • /
    • 2000
  • RC structure is the composite material system combined concrete and steel showing different plastic behavior. Especially, concrete shows very complex plastic behavior. Therefore, for plastic analysis of RC structures, we have to model carefully each plastic behavior of concrete and steel member. But, because of divergency as well as difficulties and dimensions of modelling, it takes a lot of time and labor or sometimes it is impossible to perform plastic analysis of RC structures. In this study, for simplified plastic analysis of RC structures, we propose material transformation method by homogeneous and isotropic material which have the same plastic property as RC. We generate homogeneous and isotropic material showing the same moment-curvature curves (bi-linear stress-strain relation) as RC members, using bi-linear moment-curvature relation by yielding moment, yielding curvature and ultimate moment, ultimate curvature of RC member. Finally, we prove compatibility in the study by comparing plastic analysis results for various analysis models using transformed material models and RC model.

  • PDF

Out-of-Pile Test for Yielding Behavior of PWR Fuel Cladding Material (노외 실험을 통한 가압경수형 핵연료 피복재의 항복거동연구)

  • Yi, Jae-Kyung;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.22-33
    • /
    • 1987
  • The confirmed integrity of nuclear fuel cladding materials is an important object during steady state and transient operations at nuclear power plant. In this context, the clad material yielding behavior is especially important because of pellet-clad gap expansion. During the steep power excursion, the in-pile irradiation behavior differences between uranium-dioxide fuel pellet and zircaloy clad induce the contact pressure between them. If this pressure reaches the zircaloy clad yield pressure, the zircaloy clad will be plastically deformed. After the reactor power resumed to normal state, this plastic permanent expansion of clad tube give rise to the pellet-clad gap expansion. In this paper, the simple mandrel expansion test method which utilizes thermal expansion difference between copper mandrel and zircaloy tube was adopted to simulate this phenomenon. That is, copper mandrel which has approximately three times of thermal expansion coefficient of zircaloy-4 (PWR fuel cladding material) were used in this experiment at the temperature range from 400C to 700C. The measured plastic expansion of zircaloy outer radius and derived mathematical relations give the yield pressure, yield stress of zircaloy-4 clad at the various clad wall temperatures, the activation energy of zircaloy tube yielding, and pellet-clad gap expansion. The obtained results are in good agreement with previous experimental results. The mathematical analysis and simple test method prove to be a reliable and simple technique to assess the yielding behavior and gap expansion measurement between zircaloy-4 tube and uranium-dioxide fuel pellet under biaxial stress conditions.

  • PDF

Effect of FRP composites on buckling capacity of anchored steel tanks

  • Al-Kashif, M.A.;Ramadan, H.;Rashed, A.;Haroun, M.A.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.361-371
    • /
    • 2010
  • Enhancement in the seismic buckling capacity of steel tanks caused by the addition of fiber reinforced polymers (FRP) retrofit layers attached to the outer walls of the steel tank is investigated. Three-dimensional non-linear finite element modeling is utilized to perform such analysis considering non linear material properties and non-linear large deformation large strain analysis. FRP composites which possess high stiffness and high failure strength are used to reduce the steel hoop stress and consequently improve the tank capacity. A number of tanks with varying dimensions and shell thicknesses are examined using FRP composites added in symmetric layers attached to the outer surface of the steel shell. The FRP shows its effectiveness in carrying part of the hoop stresses along with the steel before steel yielding. Following steel yielding, the FRP restrains the outward bulging of the tank and continues to resist higher hoop stresses. The percentage improvement in the ultimate base moment capacity of the tank due to the addition of more FRP layers is shown to be as high as 60% for some tanks. The percentage of increase in the tank moment capacity is shown to be dependent on the ratio of the shell thickness to the tank radius (t/R). Finally a new methodology has been explained to calculate the location of Elephant foot buckling and consequently the best location of FRP application.

The Structural Design for Combustor Chamber of Liquid Rocket Engine (액체로켓엔진 연소기 챔버 구조 설계)

  • Chung Yong-Hyun;Ryu Chul-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.36-42
    • /
    • 2004
  • The Properties of material, C18200 which is used for development of high performance liquid rocket engine combustor chamber were obtained by tension tests. The specimen for regenerative combustor was designed by structural analysis using that Properties. After the designed specimen was manufactured by the same manufacturing process of regenerative combustor. the yielding stress and yielding strain were obtained by strength tests. The properties of C18200 was degraded very much after brazing. The estimation of yielding pressure by structural analysis was almost same as that of strength test. The collector Part was yielded and failed previously than that of cooling channel part during strength test.

Cyclic testing of a new visco-plastic damper subjected to harmonic and quasi-static loading

  • Modhej, Ahmad;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.317-333
    • /
    • 2022
  • Visco-Plastic Damper (VPD) as a passive energy dissipation device with dual behavior has been recently numerically studied. It consists of two bent steel plates and segments with a viscoelastic solid material in between, combining and improving characteristics of both displacement-dependent and velocity-dependent devices. In order to trust the performance of VPD, for the 1st time this paper experimentally investigates prototype damper behavior under a wide range of frequency and amplitude of dynamic loading. A high-axial damping rubber is innovatively proposed as the viscoelastic layer designed to withstand large axial strains and dissipate energy accordingly. Test results confirmed all assumptions about VPD. The behavior of VPD subjected to low levels of excitation is elastic while with increasing levels of excitation, a significant source of energy dissipation is provided through the yielding of the steel elements in addition to the viscoelastic energy dissipation. The results showed energy dissipation of 99.35 kN.m under a dynamic displacement with 14.095 mm amplitude and 0.333 Hz frequency. Lateral displacement at the middle of the device was created with an amplification factor obtained ranging from 2.108 to 3.242 in the rubber block. Therefore, the energy dissipation of viscoelastic material of VPD was calculated 18.6 times that of the ordinary viscoelastic damper.

A simple method to produce fragment seedstock for aquaculture of Pterocladiella capillacea (Gelidiales, Rhodophyta)

  • Choi, Chang Geun;Lee, Ju Il;Hwang, Il Ki;Boo, Sung Min
    • ALGAE
    • /
    • v.36 no.4
    • /
    • pp.327-332
    • /
    • 2021
  • Raw material of gelidioid red algae yielding high-quality agar has been in short supply due to overharvesting, but in situ farming of gelidioids has not been practical due to their slow growth. To produce vegetative seedstock of a cosmopolitan species, Pterocladiella capillacea, we investigated the number and length of regenerated branches arising from sectioned fragments during 3 weeks of laboratory culture at 10, 15, 20, and 25℃. All sectioned fragments formed axis-like branches mostly from the upper cut edge and stolon-like branches mostly from the lower cut edge, showing a high capacity of regeneration and intrinsic bipolarity. At 20℃, the number of regenerated branches increased to 2.74 ± 1.29 on the upper cut edge and 4.26 ± 2.66 on the lower cut edge. Our study reveals that the use of fragments bearing regenerated branches as seedstock can be a simple method to initiate fast propagation for mass cultivation in the sea or outdoor tank.