• Title/Summary/Keyword: Yield stress

Search Result 1,973, Processing Time 0.039 seconds

A New Short Growth-Duration Rice Cultivar, "Keumo 3" (소득작물 전후작용 단기성 벼 품종 "금오3호")

  • Kang, Jong-Rae;Lee, Jong-Hee;Kwack, Do-Yeon;Lee, Jeom-Sik;Park, No-Bong;Ha, Woon-Gu;Park, Dong-Soo;Yeo, Un-Sang;Lim, Sang-Jong;Oh, Byeong-Geun
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.292-298
    • /
    • 2009
  • A new rice cultivar "Keumo 3" was developed for adopting under double cropping system with after or before cash crop cultivation. It was selected from the cross-combination between YR17202 $F_2$/Shinkeumobyeo//YR15727-B-B-B-102. The parent, YR17202 $F_2$ individual plant, was used for tolerance to lodging, it derived from a cross between Nonganbyeo/Shinkeumobyeo. Nonganbyeo is well known to lodging tolerance cultivar, as well as biotic stress, because it was developed by crossing with Tongil type. And the YR15727-B-B-B-102 line used as another parent with short growth duration, likewise highly resistance to rice blast disease. The pedigree derived from the cross-combination YR17202 $F_2$/Shinkeumobyeo//YR15727-B-B-B-102 were generated to $F_7$, and a best line among them named as Milyang 201. After a series of yield trials, including local adaptability test conducted throughout the peninsular of Korea, Milyang 201 was registered with the name of "Keumo 3" in 2005. The cultivar belongs to a early maturing group and heads 4 days earlier than Keumobyeo, a standard cultivar. It has short culm, and less spikelet number per panicle than Keumobyeo. However, its milled rice yield grown under extremely late transplanting time, 10. July, over the 3 local sites for 2003-2005 years, averaged 4,48 MT/ha, which is 6% higher than the standard, Keumobyeo. "Keumo 3" has showed a durable resistance to leaf blast disease during fourteen blast nurseries screening covered from south to north in Korea for 2003-2007 years. And it was confirmed harbours pi-zt, a durable blast resistance gene. Moreover it was incompatible with 19 blast isolates under artificial inoculation, except one isolate, K1101. Additionally, "Keumo 3" exhibits resistance to $K_1$, $K_2$ and $K_3$ of bacterial blight pathogen, as well as strip virus disease resistance, and moderate resistance to dwarf virus disease. Consequently, the new rice cultivar "Keumo 3" would be well adopted where a bio stress makes a big problem annually.

Evaluation of Biomass and Nitrogen Status in Paddy Rice Using Ground-Based Remote Sensors (지상원격측정 센서를 이용한 벼의 생체량 및 질소 영양 평가)

  • Kang, Seong-Soo;Gong, Hyo-Young;Jung, Hyun-Cheol;Kim, Yi-Hyun;Hong, Suk-Young;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.954-961
    • /
    • 2010
  • Ground-based remote sensing can be used as one of the non-destructive, fast, and real-time diagnostic tools for quantifying yield, biomass, and nitrogen (N) stress during growing season. This study was conducted to assess biomass and nitrogen (N) status of paddy rice (Oryza sativa L.) plants under N stress using passive and active ground-based remote sensors. Nitrogen application rates were 0, 70, 100, and 130 kg N $ha^{-1}$. At each growth stage, reflectance indices measured with active sensor showed higher correlation with DW, N uptake and N concentration than those with the passive sensor. NIR/Red and NIR/Amber indices measured with Crop Circle active sensors generally had a better correlation with dry weight (DW), N uptake and N content than vegetation indices from Crop Circle passive sensor and NDVIs from active sensors. Especially NIR/Red and NIR/amber ratios at the panicle initiation stage were most closely correlated with DW, N content, and N uptake. Rice grain yield, DW, N content and N uptake at harvest were highly positively correlated with canopy reflectance indices measured with active sensors at all sampling dates. N application rate explains about 91~92% of the variability in the SI calculated from NIR/Red or NIR/Amber indices measured with Crop Circle active sensors on 12 July. Therefore, the in-season sufficiency index (SI) by NIR/Red or NIR/Amber index from Crop Circle active sensors can be used for determination of N application rate.

Growth Characteristics and Yield of "Baeck Ji 1" a New High Variety of Angelica dahurica (白芷 新品種 "白芷 1號" 의 主要特性 및 收量性)

  • 정상환
    • Korean Journal of Plant Resources
    • /
    • v.10 no.1
    • /
    • pp.100-104
    • /
    • 1997
  • A new baekji(Angelica dahurica Bentham et Hooker) variety, Baekji l, was developed through a pure line selection at the Gyeongbug Provincial RDA during the period of 1990 to 1995. The variety was characterized to have high plant height. Long root length and large root diameter as compared with a check varicty of Bonghwa baekji but emergence date, flowering date and leaf number of Baekji l was similar to that of the check variety, and it was also more tolerant to nematode and heat stress. Peeled root color of Backji l was yellowbrown but number of the lateral root of the variety was greater. The dried-root yield of Baekji l in yield trial, regional adaptation trial and farmer's field trial was always $21\sim31%$ higher than that of the check variety.

  • PDF

Evaluating efficiency of automatic surface irrigation for soybean production

  • Jung, Ki-yuol;Lee, Sang-hun;Chun, Hyen-chung;Choi, Young-dae;Kang, Hang-won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.252-252
    • /
    • 2017
  • Nowadays water shortage is becoming one of the biggest problems in the Korea. Many different methods are developed for conservation of water. Soil water management has become the most indispensable factor for augmenting the crop productivity especially on soybean (Glycine max L.) because of their high susceptibility to both water stress and water logging at various growth stages. The farmers have been using irrigation techniques through manual control which farmers irrigate lands at regular intervals. Automatic irrigation systems are convenient, especially for those who need to travel. If automatic irrigation systems are installed and programmed properly, they can even save you money and help in water conservation. Automatic irrigation systems can be programmed to provide automatic irrigation to the plants which helps in saving money and water and to discharge more precise amounts of water in a targeted area, which promotes water conservation. The objective of this study was to determine the possible effect of automatic irrigation systems based on soil moisture on soybean growth. This experiment was conducted on an upland field with sandy loam soils in Department of Southern Area Crop, NICS, RDA. The study had three different irrigation methods; sprinkle irrigation (SI), surface drip irrigation (SDI) and fountain irrigation (FI). SI was installed at spacing of $7{\times}7m$ and $1.8m^3/hr$ as square for per irrigation plot, a lateral pipe of SDI was laid down to 1.2 m row spacing with $2.3L\;h^{-1}$ discharge rate, the distance between laterals was 20 cm spacing between drippers and FI was laid down in 3m interval as square for per irrigation plot. Soybean (Daewon) cultivar was sown in the June $20^{th}$, 2016, planted in 2 rows of apart in 1.2 m wide rows and distance between hills was 20 cm. All agronomic practices were done as the recommended cultivation. This automatic irrigation system had valves to turn irrigation on/off easily by automated controller, solenoids and moisture sensor which were set the reference level as available soil moisture levels of 30% at 10cm depth. The efficiency of applied irrigation was obtained by dividing the total water stored in the effective root zone to the applied irrigation water. Results showed that seasonal applied irrigation water amounts were $60.4ton\;10a^{-1}$ (SI), $47.3ton\;10a^{-1}$ (SDI) and $92.6 ton\;10a^{-1}$ (FI), respectively. The most significant advantage of SDI system was that water was supplied near the root zone of plants drip by drip. This system saved a large quantity of water by 27.5% and 95.6% compared to SI, FI system. The average soybean yield was significantly affected by different irrigation methods. The soybean yield by different irrigation methods were $309.7kg\;10a^{-1}$ from SDI $282.2kg\;10a^{-1}$ from SI, $289.4kg\;10a^{-1}$ from FI, and $206.3kg\;10a^{-1}$ from control, respectively. SDI resulted in increase of soybean yield by 50.1%, 7.0% 9.8% compared to non-irrigation (control), FI and SI, respectively. Therefore, the automatic irrigation system supplied water only when the soil moisture in the soil went below the reference. Due to the direct transfer of water to the roots water conservation took place and also helped to maintain the moisture to soil ratio at the root zone constant. Thus the system is efficient and compatible to changing environment. The automatic irrigation system provides with several benefits and can operate with less manpower. In conclusion, improving automatic irrigation system can contribute greatly to reducing production costs of crops and making the industry more competitive and sustainable.

  • PDF

Laterally Unbraced Length for Preventing Inelastic Lateral-Torsional Buckling of High-Strength Steel Beams (고강도 강재보의 비탄성 횡-비틀림좌굴 제어를 위한 횡지지 거리)

  • Park, Chang Hee;Lee, Cheol Ho;Han, Kyu Hong;Kim, Jin Ho;Lee, Seung Eun;Ha, Tae Hyu;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.115-130
    • /
    • 2013
  • In this study, lateral-torsional buckling (LTB) strength of high-strength H-beams built up from 800MPa tensile-strength steel was experimentally and analytically evaluated according to current lateral stability provisions (KBC 2009, AISC-LRFD 2010). The motivation was to evaluate whether or not current LTB provisions, which were originally developed for ordinary steel with different stress-strain characteristics, are still applicable to high-strength steel. Two sets of compact-section specimens with relatively low (Set A) or high (Set B) warping stiffness were prepared and tested under uniform moment loading. Laterally unbraced lengths of the test specimens were controlled such that inelastic LTB could be induced. All specimens exhibited LTB strength exceeding the minimum limit required by current provisions by a sufficient margin. Moreover, some specimen in Set A reached a rotation capacity required for plastic design, although its laterally unbraced length belonged to the inelastic LTB range. All the test results indicated that extrapolation of current provisions to high-strength steel is conservative. In order to further analyze the test results, the relationship between inelastic moment and laterally unbraced length was also derived in explicit form for both ordinary- and high-strength steel based on the effective tangent modulus of inelastic section. The analytical relationship derived again showed that extrapolation of current laterally unbraced length limit leads to a conservative design in the case of high-strength steel and that the laterally unbraced length to control the inelastic LTB behavior of high-strength steel beam should be specified by including its unique post-yield strain-hardening characteristics.

Growth, Photosynthesis and Chlorophyll Fluorescence of Chinese Cabbage in Response to High Temperature (고온 스트레스에 대한 배추의 생장과 광합성 및 엽록소형광 반응)

  • Oh, Soonja;Moon, Kyung Hwan;Son, In-Chang;Song, Eun Young;Moon, Young Eel;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.318-329
    • /
    • 2014
  • In order to gain insight into the physiological responses of plants to high temperature stress, the effects of temperature on Chinese cabbage (Brassica campestris subsp. napus var. pekinensis cv. Detong) were investigated through analyses of photosynthesis and chlorophyll fluorescence under 3 different temperatures in the temperature gradient tunnel. Growth (leaf length and number of leaves) during the rosette stage was greater at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures than at ambient temperature. Photosynthetic $CO_2$ fixation rates of Chinese cabbage grown under the different temperatures did not differ significantly. However, dark respiration rate was significantly higher in the cabbage that developed under ambient temperature relative to elevated temperature. Furthermore, elevated growth temperature increased transpiration rate and stomatal conductance resulting in an overall decrease of water use efficiency. The chlorophyll a fluorescence transient was also considerably affected by high temperature stress; the fluorescence yield $F_J$, $F_I$, and $F_P$ decreased considerably at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, with induction of $F_K$ and decrease of $F_V/F_O$. The values of RC/CS, ABS/CS, TRo/CS, and ETo/CS decreased considerably, while DIo/CS increased with increased growth temperature. The symptoms of soft-rot disease were observed in the inner part of the cabbage heads after 7, 9, and/or 10 weeks of cultivation at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, but not in the cabbage heads growing at ambient temperature. These results show that Chinese cabbage could be negatively affected by high temperature under a future climate change scenario. Therefore, to maintain the high productivity and quality of Chinese cabbage, it may be necessary to develop new high temperature tolerant cultivars or to markedly improve cropping systems. In addition, it would be possible to use the non-invasive fluorescence parameters $F_O$, $F_V/F_M$, and $F_V/F_O$, as well as $F_K$, $M_O$, $S_M$, RC/CS, ETo/CS, $PI_{abs}$, and $SFI_{abs}$ (which were selected in this study), to quantitatively determine the physiological status of plants in response to high temperature stresses.

The Effect of Soil Moisture Stress on the Growth of Barley and Grain Quality (토양수분 스트레스가 보리생육 및 종실품질에 미치는 영향)

  • Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.165-175
    • /
    • 1995
  • To determine the effect of soil moisture stress on growth of barley and grain quality, a pot experiment was carried out for two barley varieties(Olbori and Chogangbori) by using large plastic pot(52cm in diameter and 55cm in depth) filled with sandy loam soil under rain-controlled open green house. By means of measuring soil water potential with micro tensiometer and gypsum block installed at 10cm in soil depth, soil moisture was controlled by sub-irrigation at several irigation points such as -0.05bar, -0.2bar, -0.5bar, -1.0bar, -5.0bar and -10.0bar in soil water potential. The lower soil water potential was controlled, the shorter length of stem and internode became, and the more narrow stem diameter was. Leaf area was significantly decreased when soil water potential was controlled lower than -0.5bar, although chlorophyll content of flag and first leaves was not changed so much. Weight of grain and ear was significantly decreased when soil water potential was lower than -5.0bar and the highest grain yield was obtaind in a plot where soil water potential was controlled at -0.2bar. However, the most efficient water use of Olbori and Chogangbori was obtained at -0.5bar and -1.0bar in water potentials, respectively. Crude protain content, maximum viscosity, consistency and ${\beta}$-glucan content of barley flour increased as soil water potential significantly decreased, especially below -5.0bar, but gelatination temperature decreased as soil water potential decreased.

  • PDF

Surrogate Model-Based Global Sensitivity Analysis of an I-Shape Curved Steel Girder Bridge under Seismic Loads (지진하중을 받는 I형 곡선거더 단경간 교량의 대리모델 기반 전역 민감도 분석)

  • Jun-Tai, Jeon;Hoyoung Son;Bu-Seog, Ju
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.976-983
    • /
    • 2023
  • Purpose: The dynamic behavior of a bridge structure under seismic loading depends on many uncertainties, such as the nature of the seismic waves and the material and geometric properties. However, not all uncertainties have a significant impact on the dynamic behavior of a bridge structure. Since probabilistic seismic performance evaluation considering even low-impact uncertainties is computationally expensive, the uncertainties should be identified by considering their impact on the dynamic behavior of the bridge. Therefore, in this study, a global sensitivity analysis was performed to identify the main parameters affecting the dynamic behavior of bridges with I-curved girders. Method: Considering the uncertainty of the earthquake and the material and geometric uncertainty of the curved bridge, a finite element analysis was performed, and a surrogate model was developed based on the analysis results. The surrogate model was evaluated using performance metrics such as coefficient of determination, and finally, a global sensitivity analysis based on the surrogate model was performed. Result: The uncertainty factors that have the greatest influence on the stress response of the I-curved girder under seismic loading are the peak ground acceleration (PGA), the height of the bridge (h), and the yield stress of the steel (fy). The main effect sensitivity indices of PGA, h, and fy were found to be 0.7096, 0.0839, and 0.0352, respectively, and the total sensitivity indices were found to be 0.9459, 0.1297, and 0.0678, respectively. Conclusion: The stress response of the I-shaped curved girder is dominated by the uncertainty of the input motions and is strongly influenced by the interaction effect between each uncertainty factor. Therefore, additional sensitivity analysis of the uncertainty of the input motions, such as the number of input motions and the intensity measure(IM), and a global sensitivity analysis considering the structural uncertainty, such as the number and curvature of the curved girders, are required.

Changes in Growth and Antioxidant Phenolic Contents of Kale according to CO2 Concentration before UV-A Light Treatment (UV-A 조사 전 CO2 농도에 따른 케일의 생육과 항산화적 페놀릭 함량 변화)

  • Jin-Hui Lee;Myung-Min Oh
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.342-352
    • /
    • 2023
  • Ultra-violet (UV) light is one of abiotic stress factors and causes oxidative stress in plants, but a suitable level of UV radiation can be used to enhance the phytochemical content of plants. The accumulation of antioxidant phenolic compounds in UV-exposed plants may vary depending on the conditions of plant (species, cultivar, age, etc.) and UV (wavelength, energy, irradiation period, etc.). To date, however, little research has been conducted on how leaf thickness affects the pattern of phytochemical accumulation. In this study, we conducted an experiment to find out how the antioxidant phenolic content of kale (Brassica oleracea var. acephala) leaves with different thicknesses react to UV-A light. Kale seedlings were grown in a controlled growth chamber for four weeks under the following conditions: 20℃ temperature, 60% relative humidity, 12-hour photoperiod, light source (fluorescent lamp), and photosynthetic photon flux density of 121±10 µmol m-2 s-1. The kale plants were then transferred to two chambers with different CO2 concentrations (382±3.2 and 1,027±11.7 µmol mol-1), and grown for 10 days. After then, each group of kale plants were subjected to UV-A LED (275+285 nm at peak wavelength) light of 25.4 W m-2 for 5 days. As a result, when kale plants with thickened leaves from treatment with high CO2 were exposed to UV-A, they had lower UV sensitivity than thinner leaves. The Fv/Fm (maximum quantum yield on photosystem II) in the leaves of kale exposed to UV-A in a low-concentration CO2 environment decreased abruptly and significantly immediately after UV treatment, but not in kale leaves exposed to UV-A in a high-concentration CO2 environment. The accumulation pattern of total phenolic content, antioxidant capacity and individual phenolic compounds varied according to leaf thickness. In conclusion, this experiment suggests that the UV intensity should vary based on the leaf thickness (age etc.) during UV treatment for phytochemical enhancement.

The Effect of Heating Rate by Ohmic Heating on Rheological Property of Corn Starch Suspension (Ohmic Heating에 의한 가열속도 변화가 옥수수전분의 물성특성에 미치는 영향)

  • Lee, Seok-Hun;Jang, Jae-Kweon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.438-442
    • /
    • 2005
  • Granule swelling is essential phenomenon of starch gelatinization in excess water, and characteristic of heated starch dispersion depends largely on size and distribution of swelled starch granule. Although swelling characteristic of starch granules depends on type of starch, heating rate, and moisture content, influence of heating rate on swelling phenomenon of starch granule has not been fully discussed, because constant heating rate of starch dispersion cannot be obtained by conventional heating method. Ohmic heating, electric-resistant heat generation method, applies alternative current to food materials, through which heating rate can be easily controlled precisely and conveniently at wide range of constant heating rates. Starch dispersion heated at low heating rates below $7.5^{\circ}C/min$ showed Newtonian fluid behavior, whereas showed pseudoplastic behavior at heating rates above $16.4^{\circ}C/min$. Apparent viscosity of starch dispersion increased linearly with increasing heating rate, and yield stress was dramatically increased at heating rates above $16.4^{\circ}C/min$. Average diameter of corn starch granules during ohmic heating was dramatically increased from $30.97\;to\;37.88\;{\mu}m$ by increasing heating rate from $0.6\;to\;16.4^{\circ}C/min$ (raw corn starch: $13.7\;{\mu}m$). Hardness of starch gel prepared with 15% corn starch dispersion after heating to $90^{\circ}C$ at different heating rates decreased gradually with increasing heating rate, then showed nearly constant value from $9.4\;to\;23.2^{\circ}C/min$. Hardness increased with increase of heating rate higher than $23.2^{\circ}C/min$.