• Title/Summary/Keyword: Yield component

Search Result 611, Processing Time 0.028 seconds

Antioxidant and Antibacterial Activities of Glycyrrhiza uralensis Fisher (Jecheon, Korea) Extracts Obtained by various Extract Conditions (한국 제천 감초(Glycyrrhiza uralensis Fisher)의 추출 조건별 추출물의 항산화 및 항균 활성 평가)

  • Ha, Ji Hoon;Jeong, Yoon Ju;Seong, Joon Seob;Kim, Kyoung Mi;Kim, A Young;Fu, Min Min;Suh, Ji Young;Lee, Nan Hee;Park, Jino;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.361-373
    • /
    • 2015
  • This study was carried out to evaluate the antioxidant and antibacterial activities of Glycyrriza uralensis Fisher (Jecheon, Korea) extracts obtained by various extraction conditions (85% ethanol, heating temperatures and times), and to establish the optimal extraction condition of G. uralensis for the application as cosmetic ingredients. The extracts obtained under different conditions were concentrated and made in the powdered (sample-1) and were the crude extract solutions without concentration (sample-2). The antioxidant effects were determined by free radical scavenging activity ($FSC_{50}$), ROS scavenging activity ($OSC_{50}$), and cellular protective effects. Antibacterial activity was determined by minimum inhibitory concentration (MIC) on human skin flora. DPPH free radical scavenging activity of sample-1 ($100{\mu}g/mL$) was 10% higher in group extracted for 6 h than 12 h, but sample-2 didn't show any significant differences. The extraction yield extracted with same temperature for 12 h was 2.6 times higher than 6 h, but total flavonoid content was 1.1 times higher. These results indicated that total flavonoid content hardly increased with increasing extraction time. Free radical scavenging activity, ROS scavenging activity and cellular protective effects were not dependent on the yield of extraction, but total flavonoid content of extraction. Antibacterial activity on three skin flora (S. aureus, B. subtilis, P. acnes)of sample-1 in different extraction conditions were evaluated on same concentration, and the group extracted at 25 and $40^{\circ}C$ showed 16 times higher than methyl paraben ($2,500{\mu}g/mL$). In conclusion, 85% ethanol extracts of G. uralensis extracted at $40^{\circ}C$ for 6 h showed the highest antioxidant and antibacterial activity. These results indicate that the extraction condition is important to be optimized by comprehensive evaluation of extraction yield with various conditions, yield of active component, and activity test with concentrations, and activity of 100% extract, for manufacturing process of products.

Identification of Bovine Pregnancy-Specific Whey Proteins using Two-Dimensional Gel Electrophoresis

  • Han, Rong-Xun;Choi, Su-Min;Kim, Myung-Youn;Quan, Yan Shi;Kim, Baek-Chul;Diao, Yun Fei;Koqani, Reza;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.32 no.4
    • /
    • pp.255-261
    • /
    • 2008
  • The early diagnosis of bovine pregnancy is an essential component of successful reproductive planning on farms, because lack of bovine pregnancy over the long term results in reproductive failure and low milk yield-the latter of which is a special concern on dairy farms. This study was designed to identify early pregnancy-specific whey proteins in bovine, by comparing milk samples collected from cattle during pregnancy (Days 30 and 50) and from non-pregnant cattle. In this study, differentially expressed proteins in five pregnant and five non-pregnant Holstein dairy cattle were investigated and compared, using proteomics analysis. The first dimension was applied to a pH $3.0{\sim}10.0$ strip, by loading a 2-mg milk protein sample. After the second-dimension separation was performed, the gels were stained with colloidal Coomassie brilliant blue. The stained gels were scanned and the images were analyzed, to detect variations in protein spots between non-pregnant and pregnant cattle milk protein spots, using ImageMaster, this was followed by analysis with MALDI TOF-MS. Analysis of the 2-DE gel image resulted in a total of approximately $500{\sim}600$ protein spots, of which 12 spots were differentially expressed, six spots were up-regulated, and four spots were down-regulated; two spots were identified as pregnancy-specific proteins. These proteins were identified as lactoferrin, NA-DH dehydrogenase subunit 2, albumin, serum albumin precursor and transferrin. Our results via 2-D PAGE analysis revealed composite profiles of several milk proteins related to early bovine pregnancy, implying the possible use of these milk proteins in the early detection of bovine pregnancy.

Making Techniques of Hight Quality Powder in Sweetpotato (고구마 고품질 분말 제조기술)

  • Lee, Joon-Seol;Ahn, Young-Sup;Kim, Hag-Sin;Chung, Mi-Nam;Jeong, Byeong-Choon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.198-203
    • /
    • 2006
  • This study was conducted to select the temperature for hot air drying method, cutting method, and solution that inhibits enzymatic browning in making high quality powder from sweetpotato roots. It was observed that $70^{\circ}C$ was the best temperature for air drying method wherein the dry matter rating, dry matter time, flour yield and chemical component were considered. The proper cutting thickness should be 2.0 mm considering the vitamin C content and sensory evaluation of sweetpotato flour. Also, 1% vitamin C solution inhibited enzymatic browning of sweetpotato.

Morphological and Photosynthetic Responses of Rice to Low Radiation (일사 저하에 대한 벼의 형태적 특성 및 광합성 반응 변화)

  • Yang, Woon-Ho;Peng, Shaobing;Dionisio-Sese Maribel L.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • Light is an environmental component inevitably regulating photosynthesis and photo-morphogenesis, which are involved in the plant growth and development. Studies were conducted at the International Rice Research Institute, Philippines in 2004 and 2005, with aims to investigate 1) morphological responses of rice plants to low radiation, 2) morphological alteration of shade-grown plants when exposed to high light intensity, and 3) photosynthetic responses of shade-grown rice plants. Reduction in solar radiation by 40% induced increases in the area on a single leaf basis, biomass partitioning to leaves, and chlorophyll meter readings but brought about retardation of tiller development and decrease in above-ground biomass production of rice varieties. When the shade-grown plants from two weeks of transplanting to panicle initiation were exposed to full solar radiation after panicle initiation, they demonstrated less increase in chlorophyll meter readings and more decrease in leaf nitrogen concentrations from panicle initiation to flowering than control plants that were grown under the ambient solar radiation for whole growth period after transplanting. Shade-grown rice plants exhibited lower carbon assimilation rates but higher internal $CO_2$ concentrations on a single leaf basis than control plants, when measurements for shade-grown rice plants were made under the shading treatments. But when the measurements for shade-grown plants were made under the full solar radiation, light-saturated carbon assimilation rates were similar to control plants. Response of photosynthetic rates to varying light intensities was not considerably different between shading treatments and control. Yield reduction was observed in the shading treatments from panicle initiation to flowering and from flowering to physiological maturity, mainly by less spikelets per panicle and poor grain filling, respectively.

Effect of Shading Degrees on Grass Production, Forage Quality and Botanical Composition of Grass-Clover Mixtures (차광정도가 혼파초지의 생산량, 품질 및 식생변화에 미치는 영향)

  • Kim, Byong-Wan;Sung, Kung-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.3
    • /
    • pp.245-252
    • /
    • 2009
  • The grassland establishment under the forest become important, but it comes with a shade for the grass growing among trees. The objective of this study is to select the proper grass-clover mixtures to several shading degrees. The grass-clover mixtures were grown under full sunlights and shade cloths, which reduce sunlight intensity by 35, 50 and 75%. The various types of mixtures were allocated at each shading degrees with three replications. The productivity of mixtures was the highest under full sunlights, and intermediate with 35% degree of shading and least with both 50 and 75% degrees of shading. The 1st mixture (orchardgrass+tall fescue+Kentucky bluegrass+ladino clover+perennial ryegrass+timothy) showed the greatest yield in all treatments. The crude protein (CP) concentration of all mixtures increased with the higher degree of shading, but no CP concentration difference was observed in mixtures within same degree of shading. The lowest neutral detergent fiber (NDF) and acid detergent fiber (ADF) concentrations and highest relative feed value (RFV) were resulted in the 1st mixture in all treatments. This study indicates that tall fescue, Kentucky bluegrass, ladino clover, perennial ryegrass and timothy can be used as components for mixtures with orchardgrass which is major component for forest-pastures.

Study on Uncertainty Factors of Head Vibration Measurements (머리 진동 측정치의 불확도 인자들에 관한 연구)

  • Cheung, Wan-Sup;Kim, Young-Tae;Ryu, Je-Dam;Hong, Dong-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.20-28
    • /
    • 2005
  • This paper addresses uncertainty issues encountered recently in measuring head vibration using the conventional 6-axis or 9-axis bite-bar model. Those conventional bite-bar models are shown to present insufficient information to evaluate a generalized motion of head vibration. In order to overcome such limit, a new theoretical measurement model that consists of four 3-axis linear accelerometers is suggested. It is shown to enable the measurement of three angular acceleration components and six second-order angular velocity-dependent terms. Those nine angular motion-related ones, in addition to the three linear acceleration terms at the origin, are found to make it possible to evaluate the generalized head vibration for a given position. To examine the feasibility of the proposed method, a newly designed 12-axis bite-bar was developed. Detailed experimental results obtained from the developed 12-axis bite-bar are demonstrated in this paper. They illustrate that the popular 6-axis bite-bar model yield about $4.0\%$ relative measurement uncertainty for the pitch component of head vibration, $14\%$ and $10\%$ relative measurement uncertainty for the roll and yaw components of head vibration, respectively. Furthermore, this paper proposes other uncertainty factors to be considered in the future.

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • LEE Mi-Ock;SONG Ki-Hong;LEE Hyun-Kyung;JUNG Ji-Yoon;CHOE Vit-Nary;CHOE Sunghw
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04a
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus It is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Thermo-chemical Conversion of Poplar Wood (Populus alba × glandulosa) to Monomeric Sugars by Supercritical Water Treatment (초임계수에 의한 현사시나무의 당화 특성)

  • Choi, Joon-Weon;Lim, Hyun-Jin;Han, Kyu-Sung;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.44-50
    • /
    • 2006
  • To characterize thermo-chemical feature of su gar conversion of woody biomass poplar wood (Populus alba${\times}$glandulosa ) by sub- and supercritical water was treated for 60s under subcritical (23 MPa, 325 and $350^{\circ}C$) and supercritical (23 MPa, 380, 400, and $425^{\circ}C$) conditions, respectively. Among degradation products undegraded poplar wood solids existed in aqueous products. As the treatment temperature increased, the degradation of poplar wood was enhanced and reached up to 83.1% at $425^{\circ}C$. The monomeric sugars derived from fibers of poplar wood by sub- and supercritical treatment were analyzed by high performance anionic exchange chromatography (HPAEC). Under the subcritical temperature ranges, xylan, main hemicellulose component in poplar wood, was preferentially degraded to xylose, while cellulose degradation started at the transition zone between sub and supercritical conditions and was remarkably accelerated at the supercritical condition. The highest yield of monomeric sugars amounts to ca. 7.3% based on air dried wood weight (MC 10%) at $425^{\circ}C$.

Extraction of Glycosaminoglycan from Sea Hare, Aplysia kurodai, and Its Functional Properties 1. Optimum Extraction of Polysaccharide and Purification of Glycosaminoglycan (군소(Aplysia kurodai)에 분포하는 글루코사미노글리칸의 추출과 기능특성 1. 다당류 추출의 최적화와 글루코사미노글리칸의 정제)

  • Yoon, Bo-Yeong;Choi, Byeong-Dai;Choi, Yeung-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.11
    • /
    • pp.1640-1646
    • /
    • 2010
  • The optimum condition was investigated for the extraction of glycosaminoglycan (GAG) from sea hare, Aplysia kurodai. The most effective enzyme was Flavourzyme for extraction of glycosaminoglycan. The optimum incubation temperature and time for hydrolysis were $60^{\circ}C$ and 15 hr, respectively. The yield of precipitated polysaccharide depended on Brix and ethanol volume. The most effective concentration of Brix and ethanol were sixty and 5 volume of ethanol, respectively. Most GAG was eluted between 0.5 M and 0.75 M NaCl gradient on DEAE-Sepharose column, and identified by electroconductivity. The contents of hexuronic acid from polysaccharide extract and GAG were 1.0 g/100 g and 6.0 g/100 g, respectively. Hexosamine of polysaccharide and GAG as indicator of GAG component was 5.6 g/100 g and 25.7 g/100 g, respectively. GAG was identified as heparan sulfate compared with bands of other GAG on agarose gel electrophoresis, and its molecular weight was 29.6 kDa on Superdex 200 HR column.

Transpiration Modelling and Verification in Greenhouse Tomato (온실재배 토마토의 증산모델 개발 및 검증)

  • 이변우
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.205-215
    • /
    • 1997
  • An accurate transpiration model for greenhouse tomato crop, which is liable to transpiration depression and yield loss because of low solar radiation and high humidity, could be an efficient tool for the optimum control of greenhouse climate and for the optimization of Irrigation scheduling. The purpose of this study was to develop transpiration model of greenhouse tomato and to carry out the experimental verification. The formulas to calculate the canopy transpiration and temperature simultaneously were derived from the energy balance of canopy. Transpiration and microclimate variables such as net radiation, solar radiation, humidity, canopy and air temperature, etc. were simultaneously measured to estimate parameters of model equations and to verify the suggested model. Leaf boundary layer resistance was calculated as a function of Nusselt number and stomatal diffusive resistance was parameterized by solar radiation and leaf-air vapor pressure deficit. The equation for stomatal diffusive resistance could explain more than 80% of its variation and the calculated stomatal diffusive resistance showed good agreements with the measured values in situations independent of which the constants of the equation were estimated. The canopy net radiation calculated by Stanghellini's model with slight modification agreed well with the measured values. The present transpiration model, into which afore-mentioned component equations were assembled, was found to predict the canopy temperature, instantaneous and daily transpiration with considerable accuracy in greenhouse climates.

  • PDF