• Title/Summary/Keyword: Yeongnam Massif

Search Result 73, Processing Time 0.019 seconds

Relation between Metamorphic P-T Conditions and Boron Concentrations of Metasedimentary Rocks and Biotite Granitic Gneisses from NE Yeongnam Massif around Samcheok Area, South Korea (영남 육괴 북동부 변성퇴적암과 흑운모 화강편마암의 변성 온도-압력 조건과 전압 붕소 함량사이의 상관관계)

  • Cheong, Won-Seok;Sun, Gwang-Min;Na, Ki-Chang
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.247-259
    • /
    • 2009
  • This study is focused on the relationship between whole rock boron contents and metamorphic P-T conditions of metasedimentary rocks from northeastern Yeongnam massif around Samcheok area, Korea. Metamorphic P-T conditions of sillimanite and garnet zones based on the Ti-biotite geothermometer is 553-687$^{\circ}C$ and 582-722$^{\circ}C$ at 4-6 kbar, respectively. In the metasedimentary rocks, boron contents in whole rock decrease with increasing metamorphic grade, from sillimanite zone (9.60-189 ppm B) to garnet zone (2.63-15.97 ppm B), except one sample (90.9 ppm B) from garnet zone containing graphites. Boron depletion in garnet zone has relation with mode of tourmaline which are broken down with increasing metamorphic temperature. Boron contents are indirectly proportional to major and trace elements such as $Al_2O_3$, MgO, $Fe_2O_3$, $K_2O$, Li, Ba, Sc, Co, Cr, Rb and Cs that are abundant in tourmalines. In conclustion, tourmalines and graphite are modulator of boron contents in metasedimentary rocks. In the biotite granitic gneisses, boron contents (2.62-12.2 ppm B) are similar or lower than those of metasedimentary rocks and have no relation with metamorphic P-T conditions.

Granite Suite and Supersuite for the Triassic Granites in South Korea (우리나라 트라이아스기 화강암의 스위트/슈퍼스위트 분류)

  • Jwa Yong-Joo;Kim Jong-Sun;Kim Kun-Ki
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.4 s.42
    • /
    • pp.226-236
    • /
    • 2005
  • Using the concept of granite suite/supersuite we hierarchically divided the Triassic granites in South Korea which have spatio-temporally close relationships each other. Among the Triassic granites in the Okcheon belt (western Yeongnam massif), the Baegrok granite and the Jeomchon granite can be grouped into one suite, the Baegrok suite, whereas the Cheongsan granite into the Cheongsan suite. These two suites can be grouped again into a larger supersuite, the Baegrok supersuite, on the basis of the similarity in the source rocks and the contrasts in the petrographic and geochemical characteristics. Three Triassic granites in the Gyeongsang basin - the Yeongdeok granite, the Yeonghae granite, and the Cheongsong granite - can be grouped into the Yeongdeok suite, Yeonghae suite and Cheongsong suite, respectively. These three suites can be grouped again into a larger supersuite, the Yeongdeok supersuite, on the basis of the similarity in the source rocks and the contrasts in the petrographic and geochemical characteristics. Nd-Sr isotopic signatures for the Baegrok supersuite are quite distinct from those for the Yeongdeok supersuite, indicating that the source materials of each granitic magma were not identical. The source rocks for the Baegrok supersuite are thought to be a mixture of two crustal components of the Yeongnam massif, whereas those for the Yeongdeok supersuite to be a mixture of the depleted mantle with the crustal components of the Yeongnam massif. The fact that the two contemporaneous granite supersuites were derived from the different sources can be explained by the difference of the tectonic environments where the granitic magmas were produced.

Geochemistry of cordierite-bearing motasedimentary rocks, northern Yeongnam Massif: implications for provenance and tectonic setting

  • Kim, Jeongmin;Moonsup Cho
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.54-54
    • /
    • 2003
  • The metasedimentary rocks together with various granitoids are the main constituents in Taebaeksan gneiss complex, northern Yeongnam Massif. Chemical compositions of sedimentary rocks may reflect the nature of the provenance and could be crucial for understanding the evolution of early continental crust. Previous workers have suggested that the provenance and tectonic studies based on the geochemistry of sediments are applicable to the Precambrian samples. In this study we analyzed the major, trace and REE elements of metasedimentary rocks to understand their provenance and tectonic setting during sedimentation. The overall geochemical characteristics of metasedimentary rocks are similar to those of average shale of the post-Archean. Major element chemistry indicates mature and sorted nature of the sediments. The degree of weathering in the source rocks the is not uniform, as inferred from a large scatter in chemical indices of weathering (CIW). The immobile trace elements such as Th, Sc, and REE can be used to discriminate various sedimentary processes. The Th/sc ratios (0.9 - 4.4) are larger than those of the upper crust and average shale, suggesting that the felsic source predominates. The contents of Ni and Cr and the variations in the ratio of compatible to incompatible elements are similar to the average post-Archean shale. Uniform chondrite-normalized REE pattern with the LREE enrichment (LaN/SmN = 4.9 ${\pm}$ 0.4) and slight negative Eu anomalies (Eu/Eu$\^$*/ = 0.7 ${\pm}$ 0.1) also support this observation. The presence of negative Eu anomaly indicates that intracrustal igneous processes involving plagioclase separation have affected the provenance rocks. The LREE enrichment implies the major role of felsic rocks in source rocks. The eNd (1.9 Ga) values of metasediment rocks vary from 9.4 to 6.7, corresponding to TDM of 2.9 - 2.7 Ga. On the other hand, the 147Sm/144Nd ratios are 0.1079 - 0.1101, corresponding to typical tettigenous sediments. The geochemical features of metasedimentary rocks such as high abundances of large ion lithophile elements, high ratios of Th/Sc and La/Sm, commonly high Th/U ratios, negative Eu anomalies, and negative eNd, suggest a provenance consisting virtually entirely of recycled upper continental crust in passive margin environment. Tectonic discrimination diagrams based upon major element compositions also support this suggestion. In conjunction with igneous activity and metamorphism in the convergent margin setting at 1.8 - 1. 9 Ga, the transition from passive margin to active margin characterize the Paleoproterozoic crustal evolution in northern Yeongnam Massif.

  • PDF

SHRIMP U-Pb Zircon Ages of the Yeongju and Andong Granites, Korea and their Implications (영주화강암과 안동화강암의 SHRIMP U-Pb 저어콘 연대와 그 의미)

  • Yoon, Rina;Song, Yong-Sun;Yi, Keewook
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.209-220
    • /
    • 2014
  • SHRIMP zircon U-Pb age dating is carried out for the Yeongju and Andong granite batholiths intruding the Precambrian metamorphic complex and Paleozoic sedimentary formations within the NE Yeongnam Massif, Korea. Dating of zircons from a hornblende-biotite tonalite and an equigranular biotite granodiorite in the Yeongju granite has yielded ages of ca. 187 Ma and ca. 186 Ma, respectively. Also, dating of zircons from a biotite granodiorite and a very coarse-grained biotite granite in the Andong granite has yielded ages of ca. 182Ma and ca. 186Ma, respectively. These data indicate that the main intrusions of the Yeongju and Andong granite batholiths occur almost at the same age. The oldest age of ca. 194 Ma has been determined on zircons from a hornblende gabbro in the Andong granite, and the youngest age of 175 Ma is obtained from the Chunyang granite pluton, mainly consisting of fine-grained two-mica granite, of the Yeongju batholith. These results indicate that Jurassic Daebo magmatism in the Yeongju-Andong area, NE Yeongnam massif, started early at the Early Jurassic with an intrusion of mafic magma, and followed by an emplacement voluminous granite magma during the middle of the Early Jurassic, and was finalized with the emplacement of relatively small amount of much evolved granite magma at the end of Early Jurassic.

Geochemical Implication of Rare Earth Element pattern and Rb-Sr mineral isochron from consituent minerals in the Naedeokri-Nonggeori granite, Yeongnam Massif, Korea (영남육괴 북동부 내덕리-농거리 화강암내 구성광물의 희토류원소 분포도 및 Rb-Sr 광물연대의 지구화학적 의의)

  • Seung-Gu Lee;SeungRyeol Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.125-134
    • /
    • 2023
  • The Naedeokri and Nonggeori granites are early Proterozoic granites of the Taebaek-Sangdong area in the northeastern part of the Yeongnam Massif. In this paper, rare earth elements (REEs) concentrations of the minerals in Naedeokri and Nonggeori granites and Rb-Sr mineral isochron age are reported. Except zircon, the constituent minerals such as mica, feldspar, quartz, and tourmaline show LREE-enriched and HREE-depleted REE patterns with relatively large Eu negative anomaly. However, zircon has geochemical characteristic of LREE- and HREE-enriched REE pattern with large Eu positive anomaly. This pattern suggests that zircon should be hydrothermal zircon due to deuteric hydrothermal alteration. In addition, the Rb-Sr mineral age of Naedeokri granite indicates an age value of 1.814±142(2σ) Ma. The Rb-Sr whole rock age including pervious data of Naedeokri and Nogggeori granite indicates an age value of 1,707±74(2σ) Ma. This value is younger than the Sm-Nd isochron of 1.87 Ga, indicating that the Rb-Sr isotope system may be re-homogenized by hydrothermal alteration during the transition from a magmatic to a hydrothermal system.

Age Distribution of the Jurassic Plutons in Korean Peninsula (한반도 쥬라기 심성암의 연령분포)

  • Park, Kye-Hun;Kim, Myong-Jung;Yang, Yun-Seok;Cho, Kyung-O
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.269-281
    • /
    • 2010
  • The compiled recent precise age data for the plutonic intrusions of Korean peninsula display that the Jurassic igneous activities occurred on the Yeongnam massif since ca. 200 Ma close to the boundary between Triassic and Jurassic. Since then the igneous activities propagated toward further north through time. The Jurassic igneous activities over the Okcheon belt and its vicinity areas began at about 180 Ma when igneous activities of the Yeongnam massif had been almost over. The igneous activities within the Gyeonggi massif located further north started at somewhat later period ca. 170 Ma. Jurassic igneous activities over the Okcheon belt and its vicinity areas ended a little earlier than the Gyeonggi massif area. Such timing differences upon geographic positions within the Korean peninsula seem to reflect variations in distance to the trench, in the direction of subduction, and/or in subduction angle. Therefore precise understanding of the variations in emplacement ages of Jurassic plutons within Korean peninsula can be a important clue to reconstruct the paleogeography and tectonic environment of the northeast Asia during the Jurassic.

The Study of Age Determination Using Stepwise Dissolution Technique (단계적 용해에 의한 연대측정법 연구)

  • 박계헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.133-147
    • /
    • 2001
  • Recently developing method of age determination using stepwise dissolution technique to expand the applicability of absolute age determination significantly is evaluated whether it is applicable to the Korean samples. The materials selected for the study are uranium-bearing black slates from Changni Formation of Ogcheon metamorphic belt, tourmaline separated from Naedeongni granite of Yeongnam massif, garnet and ilmenite separated from ilmenite-bearing anorthositic rock of Yeongnam massif, scheelites from Ogbang mine, and magnetite separated from Gyemyeongsan Formation of Ogcheon metamorphic belt. For the stepwise dissolution, various acid steps with different normalities and different durations were applied to leach the samples. The leachate from each step was analyzed to determine the Pb isotopic composition and concentrations of Pb and U using thermal ionization mass spectrometer. The black slates from the Changni Formation and the tourmaline from the Naedeongni granite reveal significant variation of Pb isotopic composition, which reveals the potential of such stepwise dissolution technique as a dating method. The behaviors of uranium and lead during the each stage of step leaching are different, which seem to reflect the differences in positions within the crystal lattices depending upon mineral species.

  • PDF

Geotectonic Movements and Metal Ore Deposits in South Korea (남한(南韓)의 지구조운동(地構造運動)과 금속광상(金屬鑛床))

  • Shin, Byung Woo
    • Economic and Environmental Geology
    • /
    • v.7 no.1
    • /
    • pp.1-21
    • /
    • 1974
  • From the point of view of geological history, the land of South Korea is regarded as the subject of processes of the changes in formations of several geological blocks such as Kyonggi massif, Yeongnam massif, Taebaegsan basin, Kyungsang basin and so on. Through the long period of geological chronology, the present topography and geotectonics have been formed by the complicate interactions of epirogenetic movements, magmatism, orogenesis, differential vertical movements, metamorphism and sedimentation. The reason of the crust movements mentioned above, is suppossed that the Pacific and West Pacific plate have subducted directly or indirectly into the East Asia plate. This fact can be endorsed by the results of the studies on the heat flow, gravity anomaly, absolute age dating, tectonic lineation, lithofacies and the temperature of hot spring in South Korea. The formations of metal ore deposits as well as other geological processes can be determined by the mechanical control of the plates and be divided into several systematic patterns. The investigation of about 110 metal mines in South Korea shows the following results. (1) Plate boundary volcanic type is about 28% (2) Plate boundary plutonic type is about 44% (3) Intraplate sedimentary type is about 26% (4) Intraplate magmatic type is about 2%.

  • PDF

Topographic Relief and Denudation Resistance by Geologic Type in the Southern Korean Peninsula (한반도 남부의 지질 유형별 지형 기복과 삭박 저항력)

  • Lee, Gwang-Ryul;Park, Chung-Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • This study tried to reveal relative surface denudation resistance and ranking by geologic types in the Southern Korean Peninsula using an 1:250,000 digital geologic map and ASTER GDEM. Among rock types such as igneous, sedimentary and metamorphic rocks, metamorphic rock showed the greatest resistance to surface denudation. The most resistant rock to surface denudation by geologic periods (e.g., the Precambrian, Paleozoic, Mesozoic and Cenozoic) was found from the Precambrian. Among the major tectonic settings in the Southern Korean Peninsula such as the Gyeonggi massif, Okcheon belt, Yeongnam massif, Gyeongsang basin and Pohang basin, the Okcheon belt indicated the greatest resistance. The most and least resistant rocks from the representative nine rocks in the Southern Korean Peninsula were Paleozoic limestone, and Cretaceous sedimentary rock and Cenozoic sedimentary rock, respectively. This study suggests that Paleozoic limestone, Cretaceous volcanic rock, Paleozoic sedimentary rock and Precambrian gneiss can be regarded as hard rocks with high elevation, steep slope and complicated relief, while soft rocks with low elevation, gentle slope and simple relief are Jurassic granite, Cretaceous sedimentary rock and Cenozoic sedimentary rock.

Precambrian Crustal Evolution of the Korean Peninsula (한반도 선캠브리아 지각진화사)

  • Lee, Seung-Ryeol;Cho, Kyung-O
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.89-112
    • /
    • 2012
  • The Korean Peninsula consists of three Precambrian blocks: Nangrim, Gyeonggi and Yeongnam massifs. Here we revisited previous stratigraphic relationships, largely based on new geochronologic data, and investigated the crustal evolution history of the Precambrian massifs. The Precambrian strata have been usually divided into lower crystalline basements and upper supracrustal rocks. The former has been considered as Archean or Paleoproterozoic in age, whereas the latter as Paleoproterozoic or later. However, both are revealed as the Paleoproterozoic (2.3-1.8 Ga) strata as a whole, and Archean strata are very limited in the Korean Peninsula. These make the previous stratigraphic system wrong and require reconsideration. The oldest age of the basement rocks can be dated as old as Paleoarchean, suggested by the occurrence of ~3.6 Ga inherited zircon. However, most of crust-forming materials were extracted from mantle around ~2.7 Ga, and produced major portions of crust materials at ~2.5 Ga, which make each massif a discrete continental mass. After that, all the massifs belonged to continental margin orogen during the Paleoproterozoic time, and experienced repeated intracrustal differentiation. After the final cratonization occurring at ~1.9-1.8 Ga, they were stabilized as continental platforms. The Nangrim and Gyeonggi massif included local sedimentary deposition as well as igneous activity during Meso-to Neoproterozoic, but the Yeongnam massif remained stable before the development of Paleozoic basin.