• Title/Summary/Keyword: Yeonghae basin

Search Result 4, Processing Time 0.016 seconds

Kinematic Interpretation for the Development of the Yeonghae Basin, Located at the Northeastern Part of the Yangsan Fault, Korea

  • Altaher, Zooelnon Abdelwahed;Park, Kiwoong;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.467-482
    • /
    • 2022
  • The Yeonghae basin is located at the northeastern part of the Yangsan fault (YSF; a potentially active fault). The study of the architecture of the Yeonghae basin is important to understand the activity of the Yangsan fault system (YSFS) as well as the basin formation mechanism and the activity of the YSFS. For this study, Digital Elevation Model (DEM) was used to highlight the marginal faults, and structural fieldwork was performed to understand the geometry of the intra-basinal structures and the nature of the bounding faults. DEM analysis reveals that the eastern margin is bounded by the northern extension of the YSF whereas the western margin is bounded by two curvilinear sub-parallel faults; Baekseokri fault (BSF) and Gakri fault (GF). The field data indicate that the YSF is striking in the N-S direction, steeply dipping to the east, and experienced both sinistral and dextral strike-slip movements. Both the BSF and GF are characterized dominantly by an oblique right-lateral strike-slip movement. The stress indicators show that the maximum horizontal compressional stress was in NNE to NE and NNW-SSE, which is consistent with right-lateral and left-lateral movements of the YSFS, respectively. The plotted structural data show that the NE-SW is the predominant direction of the structural elements. This indicates that the basin and marginal faults are mainly controlled by the right-lateral strike-slip movements of the YSFS. Based on the structural architecture of the Yeonghae basin, the study area represents a contractional zone rather than an extensional zone in the present time. We proposed two models to explain the opening and developing mechanism of the Yeonghae basin. The first model is that the basin developed as an extensional pull-apart basin during the left-lateral movement of the YSF, which has been reactivated by tectonic inversion. In the second model, the basin was developed as an extensional zone at a dilational quadrant of an old tip zone of the northern segment of the YSF during the right-lateral movement stage. Later on, the basin has undergone a shortening stage due to the closing of the East Sea. The second model is supported by the major trend of the collected structural data, indicating predominant right-lateral movement. This study enables us to classify the Yeonghae basin as an inverted strike-slip basin. Moreover, two opposite strike-slip movement senses along the eastern marginal fault indicate multiple deformation stages along the Yangsan fault system developed along the eastern margin of the Korean peninsula.

Granite Suite and Supersuite for the Triassic Granites in South Korea (우리나라 트라이아스기 화강암의 스위트/슈퍼스위트 분류)

  • Jwa Yong-Joo;Kim Jong-Sun;Kim Kun-Ki
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.4 s.42
    • /
    • pp.226-236
    • /
    • 2005
  • Using the concept of granite suite/supersuite we hierarchically divided the Triassic granites in South Korea which have spatio-temporally close relationships each other. Among the Triassic granites in the Okcheon belt (western Yeongnam massif), the Baegrok granite and the Jeomchon granite can be grouped into one suite, the Baegrok suite, whereas the Cheongsan granite into the Cheongsan suite. These two suites can be grouped again into a larger supersuite, the Baegrok supersuite, on the basis of the similarity in the source rocks and the contrasts in the petrographic and geochemical characteristics. Three Triassic granites in the Gyeongsang basin - the Yeongdeok granite, the Yeonghae granite, and the Cheongsong granite - can be grouped into the Yeongdeok suite, Yeonghae suite and Cheongsong suite, respectively. These three suites can be grouped again into a larger supersuite, the Yeongdeok supersuite, on the basis of the similarity in the source rocks and the contrasts in the petrographic and geochemical characteristics. Nd-Sr isotopic signatures for the Baegrok supersuite are quite distinct from those for the Yeongdeok supersuite, indicating that the source materials of each granitic magma were not identical. The source rocks for the Baegrok supersuite are thought to be a mixture of two crustal components of the Yeongnam massif, whereas those for the Yeongdeok supersuite to be a mixture of the depleted mantle with the crustal components of the Yeongnam massif. The fact that the two contemporaneous granite supersuites were derived from the different sources can be explained by the difference of the tectonic environments where the granitic magmas were produced.

Mineralization of Hydrothermal Ore Deposits in Relation to Chemical Variation of the Cretaceous Granitoids in the Gyeongsang Basin (경상분지내 열수광상의 광화작용과 백악기 화강암류의 화학성분 변화와의 관계)

  • Lee, Jae Yeong;Lee, Jin Kook;Lee, In Ho;Kim, Sang Wook
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.363-373
    • /
    • 1994
  • The Cretaceous granitic rocks show differences in rock types and chemical compositions according to metallogenic provinces of copper, lead zinc and molybdenum in the Gyeongsang basin. Jindong granites are of granodiorite~quartz diorite~diorite in Cu-province; Makeunsan/Yucheon-Eonyang granites, granodiorite~granite in Pb Zn-province; Onjeongri-Yeonghae granites, granodiorite~quartz diorite in Mo-province, and there is a trend that productive masses are less differenciated than barren masses in Cu and Pb-Zn provinces whereas productive masses are more differenciated than barren masses in Mo province. Metallogenic provinces are distinguishable by variations of major and trace elements. The Cretaceous granitic rocks are highest in the content of Ca, Mg and other basic major elements and lowest in the content of K and Na in Cu provicne; the variation trends are vice versa in Pb-Zn province. Trace elements such as Rb and Sr show variations related to K and Ca, and metallogenic provinces are also distinguishable by their ratios. The granitic rocks of Mo province have intermediate content of major and trace elements, but are clearly distinguishable from Jindong granites and partly overlapped by Yucheon-Eonyang granites. Chlorine content in biotites is higher in a productive mass than in a barren mass in Cu province. Therefore, the mineralogical and chemical compositions are applicable as geochemical index to distinguish the types of mineralizaion, and productive and barren masses of the Cretaceous granitic rocks in the Gyeongsang basin.

  • PDF

Geology and U-Pb Age in the Eastern Part of Yeongdeok-gun, Gyeongsangbuk-do, Korea (경북 영덕군 동부 일원의 지질과 U-Pb 연령)

  • Kang, Hee-Cheol;Cheon, Youngbeom;Ha, Sangmin;Seo, Kyunghan;Kim, Jong-Sun;Shin, Hyeon Cho;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.153-171
    • /
    • 2018
  • This study focuses on the investigation of geologic distribution and stratigraphy in the eastern part of Yeongdeok-gun, based on Lidar imaging, detailed field survey, microscopic observations, SHRIMP and LA-MC-ICPMS U-Pb age dating, and a new geological map has been created. The stratigraphy of the study area is composed of the Paleoproterozoic metamorphic rocks consisting of banded gneisses of sedimentary origin and schists ($1841.5{\pm}9.6Ma$) of volcanic origin, Triassic Yeongdeok plutonic rocks ($249.1{\pm}2.3Ma$) and Pinkish granites ($242.4{\pm}2.4Ma$), Jurassic Changpo plutonic rocks ($193.2{\pm}1.9Ma{\sim}188.8{\pm}2.0Ma$) and Fine-grained granites ($192.9{\pm}1.7Ma$), Formations [Gyeongjeongdong Fm, Ullyeonsan Fm. (~108 Ma), Donghwachi Fm.] of the Early Cretaceous Gyeongsang Supergroup and acidic volcanic rocks and dykes erupted and intruded in the Late Cretaceous, Miocene intrusive rhyolitic tuffs ($23.1{\pm}0.2Ma{\sim}22.97{\pm}0.13Ma$) and sedimentary rocks of the Yeonghae basin, and the Quaternary sediments. The Triassic Pinkish granites, Jurassic Changpo plutonic rocks and Fine-grained granites are newly defined plutonic rocks in this study. Miocene intrusive rhyolitic tuffs bounded by the Yangsan Fault, which was first discovered in the north of Pohang city, are believed to play an important role in the understanding of the Miocene volcanic activity and the crustal deformation history on the Korean Peninsula. It is confirmed that The NNE-SSW-striking Yangsan Fault penetrating the central part of the study area and branch faults are predominant in the dextral movement and cutting all strata except the Quaternary sediments.