• 제목/요약/키워드: Yeongdong snowfall

검색결과 32건 처리시간 0.017초

Changed Relationship between Snowfall over the Yeongdong region of the Korean Peninsula and Large-scale Factors

  • Cho, Keon-Hee;Chang, Eun-Chul
    • 한국지구과학회지
    • /
    • 제38권3호
    • /
    • pp.182-193
    • /
    • 2017
  • A typical snowfall pattern occurs over the east coastal region of the Korean Peninsula, known as the Yeongdong region. The precipitation over the Yeongdong region is influenced by the cold and dry northeasterly wind which advects over warm and moist sea surface of the East Sea of Korea. This study reveals the influence of large-scale factors, affecting local to remote areas, on the mesoscale snowfall system over the Yeongdong region. The National Centers for Environmental Prediction-Department of Energy reanalysis dataset, Extended Reconstructed sea surface temperature, and observed snowfall data are analyzed to reveal the relationship between February snowfall and large-scale factors from 1981 to 2014. The Yeongdong snowfall is associated with the sea level pressure patterns over the Gaema Plateau and North Pacific near the Bering Sea, which is remotely associated to the sea surface temperature (SST) variability over the North Pacific. It is presented that the relationship between the Yeongdong snowfall and large-scale factors is strengthened after 1999 when the central north Pacific has warm anomalous SST. These enhanced relationships explain the atmospheric patterns of recent strong snowfall years (2010, 2011, and 2014). It is suggested that the newly defined index in this study based on related SST variability can be used for a seasonal predictor of the Yeongdong snowfall with 2-month leading.

2020년 2월 8일 영동지역 강설 사례 시 관측과 수치모의 된 바람 분석 (An Analysis of Observed and Simulated Wind in the Snowfall Event in Yeongdong Region on 8 February 2020)

  • 김해민;남형구;김백조;지준범
    • 대기
    • /
    • 제31권4호
    • /
    • pp.433-443
    • /
    • 2021
  • The wind speed and wind direction in Yeongdong are one of the crucial meteorological factors for forecasting snowfall in this area. To improve the snowfall forecast in Yeongdong region, Yeongdong Extreme Snowfall-Windstorm Experiment, YES-WEX was designed. We examined the wind field variation simulated with Local Data Assimilation and Prediction System (LDAPS) using observed wind field during YES-WEX period. The simulated wind speed was overestimated over the East Sea and especially 2 to 4 times in the coastal line. The vertical wind in Yeongdong region, which is a crucial factor in the snowfall forecast, was not well simulated at the low level (850 hPa~1000 hPa) until 12 hours before the forecast. The snowfall distribution was also not accurately simulated. Three hours after the snowfall on the East Sea coast was observed, the snowfall was simulated. To improve the forecast accuracy of snowfall in Yeongdong region, it is important to understand the weather conditions using the observed and simulated data. In the future, data in the northern part of the East Sea and the mountain slope of Taebaek observed from the meteorological aircraft, ship, and drone would help in understanding the snowfall phenomenon and improving forecasts.

북한 지역의 산맥군이 영동 지역의 겨울철 강설 분포에 미치는 영향에 관한 수치 연구 (A Numerical Case Study Examining the Orographic Effect of the Northern Mountain Complex on Snowfall Distribution over the Yeongdong Region)

  • 이재규;김유진
    • 대기
    • /
    • 제19권4호
    • /
    • pp.345-370
    • /
    • 2009
  • Numerical experiments using the Weather Research and Forecasting (WRF) model were done to identify the role of the mountain ranges in the northern part of the Peninsula (referred as "the northern mountain complex"), in the occurrence of two heavy snowfall events over the Yeongdong region on 7-8 December 2002 and 20-21 January 2008. To this end, control simulations with the topography of the northern mountain complex and other simulations without the topography of the mountain complex were performed. It was revealed that the amount of snowfall over the Yeongdong region from the control simulation much more exceeded that of the simulation without the topography of the mountain complex. This increase of the snowfall amount over the Yeongdong region can be explained as follows: As the upstream flow approached the northern mountain complex, it deflected around the northern mountain complex due to the blocking effect of the mountains with a low Froude number less than ~0.16. This lead to the strengthening of northeasterly over the East Sea and over the Yeongdong region. The strong northeasterly is accompanied with much more snowfall over the Yeongdong region by intensifying air-mass modification over the sea and the orographic effect of the Taeback mountains. Thus, it was concluded that the topography of the northern mountain complex is one of the main factors in determining the distribution and amount of precipitation in the Yeongdong region when there is an expansion of the Siberian High toward the East Sea.

영동 지역의 극한 대설 사례와 관련된 종관 환경 (Synoptic Environment Associated with Extreme Heavy Snowfall Events in the Yeongdong Region)

  • 권태영;조영준;서동희;최만규;한상옥
    • 대기
    • /
    • 제24권3호
    • /
    • pp.343-364
    • /
    • 2014
  • This study presents local and synoptic conditions associated with extreme heavy snowfall events in the Yeongdong region, as well as the temporal and spatial variability of these conditions. During the last 12 years (2001~2012), 3 extreme snowfall events occurred in the Yeongdong region, which recorded daily snowfall greater than 50 cm, respectively. In these events, one of the noticeable features is the occurrence of heavy hourly snowfall greater than 10 cm. It was reported from satellite analysis that these heavy snowfall may be closely related to mesoscale convective clouds. In this paper the 3 extreme events are examined on their synoptic environments associated with the developments of mesoscale convective system using numerical model output. These 3 events all occurred in strongly forced synoptic environments where 500 and 300 hPa troughs and 500 hPa thermal troughs were evident. From the analysis of diagnostic variables, it was found in all 3 events that absolute vorticity and cold air advection were dominant in the Yeongdong region and its surrounding sea at upper levels, especially at around 500 hPa (absolute vorticity: $20{\sim}60{\times}10^{-5}s^{-1}$, cold air advection: $-10{\sim}-20^{\circ}C$ $12hr^{-1}$). Moreover, the spatial distributions of cold advection showed mostly the shape of a narrow band along the eastern coast of Korea. These features of absolute vorticity and cold advection at 500 hPa were sustained for about 10 hours before the occurrence of maximum hourly snowfall.

영동지역 대설 사례의 대기 하층 안정도 분석 (An Analysis of Low-level Stability in the Heavy Snowfall Event Observed in the Yeongdong Region)

  • 이진화;은승희;김병곤;한상옥
    • 대기
    • /
    • 제22권2호
    • /
    • pp.209-219
    • /
    • 2012
  • Extreme heavy snowfall episodes have been investigated in case of accumulated snowfall amount larger than 50 cm during the past ten years, in order to understand the association of low-level stability with heavy snowfall in the Yeongdong region. In general, the selected 4 events have similar synoptic setting such as the Siberian High extended to East Sea along with the Low passing by the southern Korean Peninsula, eventually inducing easterly in the Yeongdong region. Specifically moist-adiabatically neutral layer has been observed during the heavy snowfall period, which was easily identified using vertical profiles of equivalent potential temperature observed at Sokcho, whereas convective unstable layer has been formed over the East sea due to relatively warm sea surface temperature (SST) about $8{\sim}10^{\circ}C$ and lower temperature around 1~2 km above the surface, obtained from RDAPS. Difference of equivalent potential temperature between 850 hPa and surface as well as difference between air and sea temperatures altogether gradually increased before the snowfall period. Instability-induced moisture supply to the atmosphere from the East sea, being cooled and saturated by the upper cold surge, would make low-level ice cloud, and eventually move inland by the easterly flow. Heavy snowfall will be enhanced in association with low-level convergence by surface friction and upslope wind against Taebaek mountains. This study emphasizes the importance of low level stability in the Yeongdong region using the radiosonde sounding and RDAPS data, which should quantitatively be examined through numerical model as well as heat and moisture supply from the ocean.

영동 지역 한기 축적과 강설의 연관성 분석 (Analysis of the Relationship of Cold Air Damming with Snowfall in the Yeongdong Region)

  • 김미경;김병곤;은승희;채유진;정지훈;최영길;박균명
    • 대기
    • /
    • 제31권4호
    • /
    • pp.421-431
    • /
    • 2021
  • The Yeongdong region is frequently vulnerable to heavy snowfall in winter in terms of societal and economical damages. By virtue of a lot of previous efforts, snowfall forecast has been significantly improved, but the performance of light snowfall forecast is still poor since it is very conducive to synoptic and mesoscale interactions, largely attributable to Taeback mountains and East Sea effects. An intensive observation has been made in cooperation with Gangwon Regional Meteorological Office and National Institute of Meteorological Studies in winter seasons since 2019. Two distinctive Cold Air Damming (CAD) events (14 February 2019 and 6 February 2020) were observed for two years when the snowfall forecast was wrong specifically in its location and timing. For two CAD events, lower-level temperature below 2 km ranged to lowest limit in comparisons to those of the previous 6-years (2014~2019) rawinsonde soundings, along with the stronger inversion strength (> 2.0℃) and thicker inversion depth (> 700 m). Further, the northwesterly was predominant within the CAD layer, whereas the weak easterly wind was exhibited above the CAD layer. For the CAD events, strong cold air accumulation along the east side of Taeback Mountains appeared to prevent snow cloud and convergence zone from penetrating into the Yeongdong region. We need to investigate the influence of CAD on snowfall in the Yeongdong region using continuous intensive observation and modeling studies altogether. In addition, the effect of synoptic and mesoscale interactions on snowfall, such as nighttime drainage wind and land breeze, should be also examined.

북동 기류와 관련된 영동해안 지역의 대설 사례에 대한 WRF수치모의 연구 (A Numerical Simulation Study Using WRF of a Heavy Snowfall Event in the Yeongdong Coastal Area in Relation to the Northeasterly)

  • 이재규;김유진
    • 대기
    • /
    • 제18권4호
    • /
    • pp.339-354
    • /
    • 2008
  • A numerical simulation of a heavy snowfall event that occurred 13 January 2008 along the Yeongdong coastal area, was performed using WRF (Weather Research and Forecasting) in order to reveal mesoscale structures and to construct a conceptual model showing the meteorological background that caused the large difference in snowfall amounts between the Yeongdong mountain area and the Yeongdong coastal area. The simulation results matched well with various observations such as corresponding 12h-accumulated observed precipitation, surface wind obscrvation, radar echoes, and satellite infrared images. The simulation and the observations showed that the scale of the event was of meso - $\beta$ and meso - $\gamma$ scale. The simulation represented well the mesoscale process causing the large difference in snowfall amounts in the two areas. First, wind flow was kept, to a certain extent, from crossing the mountains due to the blocking effect of the low Froude number (~1). The northeast flow over the adjaccnt sea tumcd northwest as it approachcd the mountains, where it was trapped, allowing so-called cold air damming. Second, a strong convergence area formed where the cold northwest flow along the Yeongdong coastal area and the relatively warm and moist northeast flow advecting toward the coast met, supporting the fonllation of a coastal front. Thus, the vertical motion was strongest over the front located near the coast, leading to the heavy snowfall there rather than in the remote mountain area.

태백산맥이 영동지역의 강설량 분포에 미치는 영향에 관한 수치 모의 사례 연구 (A Numerical Case Study Examining the Orographic Effect of the Taebaek Mountains on Snowfall Distribution over the Yeongdong Area)

  • 이재규;김유진
    • 대기
    • /
    • 제18권4호
    • /
    • pp.367-386
    • /
    • 2008
  • The Weather Research and Forecasting (WRF) model was designed to identify the role of the Taebaek Mountains in the occurrence of heavy snowfall in Yeongdong area with a strong northeast wind on January 20-21, 2008. To this end, in addition to the control simulation with the realistic distribution of the Taebaek Mountains, a sensitivity experiment that removed the orography over the Taebaek Mountains was performed. The control simulation results showed that the resulting wind field and precipitation distribution were similar to what were observed. Results from the sensitivity experiment clearly demonstrates the presence of orographic lifting on the windward slope of the mountains. It is concluded that the altitude of the Taebaek Mountains is the main controlling factor in determining the distribution and amount of precipitation in the Yeongdong area for the case of heavy snowfall in January 2008.

2017년 1월 20일 발생한 강원 영동대설 사례에 대한 대기의 구조적 특성 연구 (A Study on the Synoptic Structural Characteristics of Heavy Snowfall Event in Yeongdong Area that Occurred on 20 January, 2017)

  • 안보영;이정선;김백조;김희원
    • 한국환경과학회지
    • /
    • 제28권9호
    • /
    • pp.765-784
    • /
    • 2019
  • The synoptic structural characteristics associated with heavy snowfall (Bukgangneung: 31.3 cm) that occurred in the Yeongdong area on 20 January 2017 was investigated using surface and upper-level weather charts, European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data, radiosonde data, and Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product. The cold dome and warm trough of approximately 500 hPa appeared with tropopause folding. As a result, cold and dry air penetrated into the middle and upper levels. At this time, the enhanced cyclonic potential vorticity caused strong baroclinicity, resulting in the sudden development of low pressure at the surface. Under the synoptic structure, localized heavy snowfall occurred in the Yeongdong area within a short time. These results can be confirmed from the vertical analysis of radiosonde data and the characteristics of the MODIS cloud product.

2021년 3월 1-2일 영동지역 강설 사례 연구 (A Case Study of Snowfall Event over Yeongdong Region on March 1-2, 2021)

  • 안보영;임병환
    • 한국지구과학회지
    • /
    • 제44권2호
    • /
    • pp.119-134
    • /
    • 2023
  • 본 연구는 2021년 3월 1일부터 2일까지 영동지역에 강설이 발생했던 사례의 종관적, 열역학적, 역학적 특성을 분석한 것이다. 분석에 사용한 자료는 AWS 관측자료, 지상일기도, ERA5 재분석 자료, 레윈존데, 천리안 2A 위성 자료, WISSDOM 자료 등이다. 사례 기간 영동지역 4개소에서 관측된 적설은 10 cm 이상으로 나타났으며, 북강릉(37.4 cm)에서는 가장 많은 적설을 보였다. 종관 분석결과, 동해상 및 영동지역 주변으로 중·상층 대기의 매우 차고 건조한 대기와 상대적으로 따뜻한 하층 대기의 온도 차이로 대류 불안정이 형성되어 북강릉 지역으로 대류운의 발달과 함께 강설이 나타났다. 특히 열역학적 및 운동학적 연직 분석에서, 하층에서 온위의 연직 경도에 의한 강한 바람과 한랭이류에 의한 대류 불안정이 영동지역의 강설 발생에 큰 역할을 한 것으로 판단된다. 이러한 결과는 레윈존데의 연직 분석에서도 확인할 수 있었다.