• 제목/요약/키워드: Yellow Dust

검색결과 144건 처리시간 0.025초

종합해양과학기지 구축 및 활용의 경제성 분석 (An Economic Feasibility Study for Construction and Use of Korea Ocean Research Stations)

  • 송상화;신광섭;김재곤;정진용
    • 산업경영시스템학회지
    • /
    • 제38권1호
    • /
    • pp.52-64
    • /
    • 2015
  • Korea ocean research stations manage the weather and environmental data collected from coastal and ocean areas to provide short-term and long-term ocean forecasts. The purpose of this paper is to analyze and quantify economic benefits of the ocean research stations with sensors to observe physical, chemical, and biological data. The construction and operation of an integrated ocean observation station is expected to reduce uncertainty about ocean and coastal areas and to improve the quality of ocean forecasts. The economic benefits are mainly come from improved search and rescue operations, ocean pollution management, yellow dust management, and improved productivity in ocean-related industries. In addition, an input-output analysis is performed to evaluate the economic impacts of ocean research stations nationwide. The analysis shows that the system can contribute to industries such as fishing, maritime and air cargo, medical and health care.

황사발원지들의 토지피복 비교 연구 : 고비사막과 만주지역 (The study for land cover comparisons over origin area of yellow dust : for Gobi and Manchuria)

  • 피경진;염종민;이창석;이가람;박수재;한경수;김영섭
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2009년도 춘계학술대회 논문집
    • /
    • pp.93-96
    • /
    • 2009
  • 황사를 일으키는 원인인 사막화는 최근 50년간 중국 인구의 급격한 증가와 대규모 벌목, 개간으로 가속화 확대되고 있고 세계적으로 매우 중요한 문제이다. 따라서 원격탐사를 통해 중국 황사발원지들의 사막화 과정을 모니터링하는 것은 매우 중요하다. 2000년 이전에는 주로 고비사막과 황토고원에서 발생하던 황사가 2000년 이후에는 내몽골 고원과 만주부근에서 빈번하게 발원하고 있다. 본 연구에서는 변화하고 있는 지표를 파악하기 위하여 이전 황사발원지인 고비사막과 새로운 황사발원지로 주목받고 있는 만주에 대한 토지피복 비교 분석을 수행하였다. 이를 위해 1999년 (05.01-10.31)과 2007년 (05.01-10.31)의 SPOT/VEGETATION의 NDVI (Normalized Difference Vegetation Index) 10-day 자료를 이용하여 NDVI패턴을 분석하였다. 또한 식생의 밀도에 따라 level로 분류하여 식생상태를 비교하였다. 그 결과 황사발원지들의 동진추세를 확인하였고, 최근 고비사막의 식생상태가 2000년 이전보다 호전되고, 만주는 이전보다 악화된 식생상태를 보였다. 또한 최근 우리나라에 영향을 주는 황사는 만주와 만주 주변 영향을 같이 받는 경향을 보였다.

  • PDF

Development of Safety Equipment using Laser Radar Sensor for Railway Platform

  • Hwang, Jong-Gyu;Kim, You-Ho;Jo, Hyun-Jeong;Choi, Kwon-Hee;Ko, Tae-Kuk
    • International Journal of Safety
    • /
    • 제9권2호
    • /
    • pp.35-40
    • /
    • 2010
  • Many casualties are being occurred due to many misses the railway platform, and the accident occurrence is being increased. Recently in Korea, efforts to prevent casualties fundamentally are being made by installing and operating the PSD(Passenger Screen Door) as to prevent these casualties of passengers. However, in case of the PSD system, although it can solve the problem of public casualties at platform fundamentally, it is impossible to install it at whole railway platforms. This paper proposes the safety equipment using LaserRadar sensor for the prevention against casualties of passengers at platform. The safety equipment using novel sensor is the safety equipment making an approaching train stopped if the falling object is a person by detecting the obstacle at platform, and it has the merit possible to apply it to platform since it may detect accurately under ambient environmental elements such as the snow, rain and yellow dust, etc. also. We manufactured a prototype of the safety equipment to reduce public casualties at platform by using LaserRadar sensor and carried out its performance test, and the result is presented in this paper.

광주시 대기오염물질 배출량 변화추이에 관한 연구 (A study on the air pollutant emission trends in Gwangju)

  • 서광엽;신대윤
    • 환경위생공학
    • /
    • 제24권4호
    • /
    • pp.1-26
    • /
    • 2009
  • We conclude the following with air pollution data measured from city measurement net administered and managed in Gwangju for the last 7 years from January in 2001 to December in 2007. In addition, some major statistics governed by Gwangju city and data administered by Gwangju as national official statistics obtained by estimating the amount of national air pollutant emission from National Institute of Environmental Research were used. The results are as follows ; 1. The distribution by main managements of air emission factory is the following ; Gwangju City Hall(67.8%) > Gwangsan District Office(13.6%) > Buk District Office(9.8%) > Seo District Office(5.5%) > Nam District Office(3.0%) > Dong District Office(0.3%) and the distribution by districts of air emission factory ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%). That by types(Year 2004~2007 average) is also following ; Type 5(45.2%) > Type 4(40.7%) > Type 3(8.6%) > Type 2(3.2%) > Type 1(2.2%) and the most of them are small size of factory, Type 4 and 5. 2. The distribution by districts of the number of car registrations is the following ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%) and the distribution by use of car fuel in 2001 ; Gasoline(56.3%) > Diesel(30.3%) > LPG(13.4%) > etc.(0.2%). In 2007, there was no ranking change ; Gasoline(47.8%) > Diesel(35.6%) > LPG(16.2%) >etc.(0.4%). The number of gasoline cars increased slightly, but that of diesel and LPG cars increased remarkably. 3. The distribution by items of the amount of air pollutant emission in Gwangju is the following; CO(36.7%) > NOx(32.7%) > VOC(26.7%) > SOx(2.3%) > PM-10(1.5%). The amount of CO and NOx, which are generally generated from cars, is very large percentage among them. 4. The distribution by mean of air pollutant emission(SOx, NOx, CO, VOC, PM-10) of each county for 5 years(2001~2005) is the following ; Buk District(31.0%) > Gwangsan District(28.2%) > Seo District(20.4%) > Nam District(12.5%) > Dong District(7.9%). The amount of air pollutant emission in Buk District, which has the most population, car registrations, and air pollutant emission businesses, was the highest. On the other hand, that of air pollutant emission in Dong District, which has the least population, car registrations, and air pollutant emission businesses, was the least. 5. The average rates of SOx for 5 years(2001~2005) in Gwangju is the following ; Non industrial combustion(59.5%) > Combustion in manufacturing industry(20.4%) > Road transportation(11.4%) > Non-road transportation(3.8%) > Waste disposal(3.7%) > Production process(1.1%). And the distribution of average amount of SOx emission of each county is shown as Gwangsan District(33.3%) > Buk District(28.0%) > Seo District(19.3%) > Nam District(10.2%) > Dong District(9.1%). 6. The distribution of the amount of NOx emission in Gwangju is shown as Road transportation(59.1%) > Non-road transportation(18.9%) > Non industrial combustion(13.3%) > Combustion in manufacturing industry(6.9%) > Waste disposal(1.6%) > Production process(0.1%). And the distribution of the amount of NOx emission from each county is the following ; Buk District(30.7%) > Gwangsan District(28.8%) > Seo District(20.5%) > Nam District(12.2%) > Dong District(7.8%). 7. The distribution of the amount of carbon monoxide emission in Gwangju is shown as Road transportation(82.0%) > Non industrial combustion(10.6%) > Non-road transportation(5.4%) > Combustion in manufacturing industry(1.7%) > Waste disposal(0.3%). And the distribution of the amount of carbon monoxide emission from each county is the following ; Buk District(33.0%) > Seo District(22.3%) > Gwangsan District(21.3%) > Nam District(14.3%) > Dong District(9.1%). 8. The distribution of the amount of Volatile Organic Compound emission in Gwangju is shown as Solvent utilization(69.5%) > Road transportation(19.8%) > Energy storage & transport(4.4%) > Non-road transportation(2.8%) > Waste disposal(2.4%) > Non industrial combustion(0.5%) > Production process(0.4%) > Combustion in manufacturing industry(0.3%). And the distribution of the amount of Volatile Organic Compound emission from each county is the following ; Gwangsan District(36.8%) > Buk District(28.7%) > Seo District(17.8%) > Nam District(10.4%) > Dong District(6.3%). 9. The distribution of the amount of minute dust emission in Gwangju is shown as Road transportation(76.7%) > Non-road transportation(16.3%) > Non industrial combustion(6.1%) > Combustion in manufacturing industry(0.7%) > Waste disposal(0.2%) > Production process(0.1%). And the distribution of the amount of minute dust emission from each county is the following ; Buk District(32.8%) > Gwangsan District(26.0%) > Seo District(19.5%) > Nam District(13.2%) > Dong District(8.5%). 10. According to the major source of emission of each items, that of oxides of sulfur is Non industrial combustion, heating of residence, business and agriculture and stockbreeding. And that of NOx, carbon monoxide, minute dust is Road transportation, emission of cars and two-wheeled vehicles. Also, that of VOC is Solvent utilization emission facilities due to Solvent utilization. 11. The concentration of sulfurous acid gas has been 0.004ppm since 2001 and there has not been no concentration change year by year. It is considered that the use of sulfurous acid gas is now reaching to the stabilization stage. This is found by the facts that the use of fuel is steadily changing from solid or liquid fuel to low sulfur liquid fuel containing very little amount of sulfur element or gas, so that nearly no change in concentration has been shown regularly. 12. Concerning changes of the concentration of throughout time, the concentration of NO has been shown relatively higher than that of $NO_2$ between 6AM~1PM and the concentration of $NO_2$ higher during the other time. The concentration of NOx(NO, $NO_2$) has been relatively high during weekday evenings. This result shows that there is correlation between the concentration of NOx and car traffics as we can see the Road transportation which accounts for 59.1% among the amount of NOx emission. 13. 49.1~61.2% of PM-10 shows PM-2.5 concerning the relationship between PM-10 and PM-2.5 and PM-2.5 among dust accounts for 45.4%~44.5% of PM-10 during March and April which is the lowest rates. This proves that particles of yellow sand that are bigger than the size $2.5\;{\mu}m$ are sent more than those that are smaller from China. This result shows that particles smaller than $2.5\;{\mu}m$ among dust exist much during July~August and December~January and 76.7% of minute dust is proved to be road transportation in Gwangju.

장기간 (1989 ~ 2012) 측정자료를 이용한 용인-수원지역에서의 PM10 및 PM2.5의 오염특성 분석 (질량농도 중심) (PM10 and PM2.5 Characterization based on Mass Concentration Long-term (1989 ~ 2012) Database in Yongin-Suwon Area)

  • 임효지;이태정;김동술
    • 한국대기환경학회지
    • /
    • 제31권3호
    • /
    • pp.209-222
    • /
    • 2015
  • Fine and coarse PM had been collected by LVCI (low volume cascade impactor) and HVAS (high volume air sampler) during January 1989 to April 2012 at Kyung Hee University, Global Campus located on the boarder of Yongin and Suwon. The database of PM mass concentration was constructed and then intensively and extensively investigated to understand monthly, seasonal, and annual patterns of each PM behavior. Especially the study separated all the PM data into the 5 Period Zones, which were classified on the basis of social, political, and environmental issues that might be influencing local ambient air quality during the monitoring period. The overall $PM_{10}$ level had been continuously decreased until 2005 and after then was staggering due to rapidly increasing $PM_{2.5}$ level in $PM_{10}$. The annual average of $PM_{2.5}$ concentration varied from $34.3{\mu}g/m^3$ to $59.0{\mu}g/m^3$, which were much higher than the 2015 ambient air quality standard. The $PM_{2.5}$ level was strongly associated with haze events, while both $PM_{10}$ and $PM_{2.5}$ levels were associated with Yellow storm events. Daily concentrations of $PM_{2.5}$ were ranged $13.1{\sim}212.9{\mu}g/m^3$ in haze days and $33.6{\sim}124.6{\mu}g/m^3$ in Asian dust days. The study also intensively investigated annual and seasonal patterns of $PM_{2.5}/PM_{10}$ ratios.

24절기 야외 부유곰팡이 농도 조사 및 기상요소와의 상관성 분석 (Survey of Airborne Fungi Levels in 24 Seasonal Divisions and Correlation Analysis with Meteorological Elements)

  • 김명남;홍진영;이정민;박지희
    • 보존과학회지
    • /
    • 제35권6호
    • /
    • pp.652-663
    • /
    • 2019
  • 목조건축문화재의 생물피해 영향을 미치는 야외 부유곰팡이의 연중 변화와 일간 변화를 파악하기 위해서는 포집주기와 측정시간대의 충분한 반영이 필요하다. 본 연구는 2018년 8월부터 2019년 7월까지 1년간 국립문화재연구소 보존과학센터 옥상에서 에어샘플러와 Potato dextrose agar 배지를 이용하여 포집주기는 24절기, 포집시간대는 14시(낮)와 23시(밤)에 포집하였고, 기상요소를 1시간 단위로 수집하였으며, 부유곰팡이의 농도 조사 및 기상요소와의 상관성 분석을 진행하였다. 그 결과, 부유곰팡이 농도는 11월, 가을, 밤에 가장 높았고, 가을, 여름, 겨울, 봄 순으로 높았으며, 강우, 태풍, 황사/미세먼지에 따라 부유곰팡이 농도, 종류, 우점은 달랐다. 부유곰팡이 농도는 강수량, 강수일수, 상대습도와 강한 양의 선형 상관성이 나타났다. 부유곰팡이 농도는 영양원에 있어서는 죽은 식물체의 증가 시기, 기상요소에 있어서는 강우를 포함한 높은 상대습도 조건과 관련이 깊었다.

들기름 기반 야외 금속 조형물 보존용 혼합 Wax의 개발 및 적용성에 관한 연구: 철제 조형물 중심으로 (A Study on the Development and Application of Perilla Oil Based Compound Wax Agent for Preserving Outdoor Metal Sculpture: A Case Study on Iron Sculptures)

  • 오승준;위광철
    • 보존과학회지
    • /
    • 제33권2호
    • /
    • pp.121-130
    • /
    • 2017
  • 현재 야외 철제 조형물 보존용 코팅제로 사용되고 있는 wax는 장점도 있지만 낮은 내구성 및 안정성 등의 단점으로 인한 사용상의 문제점이 노출되고 있다. 손상원인으로는 대기오염에 의한 대기가스와 산성비, 공기 중의 수분, 미세먼지, 황사 등에 의해 wax가 노화되어 코팅력이 저하되고, 이로 인해 보존처리 후 짧은 시간 내에 재 부식이 발생한다. 또한 wax의 노화로 색상변화 및 광택변화가 일어나 표면 이질감을 주기도 한다. 이러한 문제점들은 장기간 지속되어 왔으며 이를 개선하기 위한 재료의 개발이 필요한 실정이다. 이에 본 연구에서는 기존에 사용되어지고 있는 wax 코팅제들을 분석하여 각각의 특성과 용도별로 부족한 점들을 파악하여 보다 개선된 wax 코팅제를 개발하였으며, 야외 폭로실험과 인공 산성비 실험을 통해 환경 변화에 따른 표면 코팅 변화양상을 확인해본 결과 기존 재료들 보다 야외 폭로실험결과 약 4배, 인공 산성비 실험 결과 약 1.5배 이상의 우수한 부식방지 및 차단 효과를 나타내었다. 또한 색도 및 광택도, 접촉각, 박막두께 등의 물성 측정을 통해 기존에 사용되어온 wax보다 박막두께는 약 1.3 ~ 1.8배 두껍지만 고른 피막을 형성해 외부 환경으로 부터의 차단성 및 내구성이 우수하고 색도 및 광택도도 기존의 재료와 유사한 물성을 보여주어 기존에 사용되어온 wax 코팅제를 대체할 수 있는 재료로 판단된다.

Propagation of Bell Pepper (Capsicum annuum var. grossum) through tissue culture

  • Senarath, WTPSK;Shaw, D.S.;Lee, Kui-Jae;Lee, Wang-Hyu
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2003년도 춘계 학술발표대회
    • /
    • pp.131-132
    • /
    • 2003
  • Leaf discs and apical meristems were cultured in Murashige and Skoog (MS) medium supplemented with cytokinin and auxin at different concentrations. Callus production was observed in all tested media after six days of incubation. Callus produced in the presence of high concentration of NAA (2.0mg/1) was fragile in texture and yellow in colour. Highest callus formation was observed from leaf discs in the medium supplemented with 1.0mg/1 NAA and 0.5 mg/l BAP in dark at $25{\pm}1{\circ}C$. Percentage of callus formation was 95% and mean callus fresh weight was 654.88 43.53 mg. Shoots were induced from the callus after 4 weeks in 1/2MS medium supplemented with BAP and kinetin both at 0.5mg/1. When elongated shoots were separated and transferred into multiplication medium (MS+0.5mg/1 BAP+0.5mg/1 kinetin) multiplication rate was 6.4 after 6 weeks. Higher concentrations of BAP caused callus production at the base. Direct shoot induction was observed from apical meristems in MS medium in the presence of 0.175 mg/1 IAA + 2.25mg/1 BAP and 0.175 mg/1 IAA + 3.0 mg/1 BAP in 16 hour day at $25{\pm}1{\circ}C$. Explants (apical meristems) elongated to form a single shoot forming a callus at the base. Adventitious buds were sprouted out from the base. Percentage explants which producing shoots was 28.57 and 65.5 respectively. Multiple shoot induction was also observed in the same media. Highest multiple shoot production was observed in the presence of 0.175 mg/l IAA and 3.0mg/l BAP, Mean number of shoots per explant was 5.36 and the mean shoot length was $16.66{\pm}4.15$mm. Shoots (20 30m length) were tested for root induction. Excised shoots were transferred into rooting media, which contains different concentrations of NAA and IAA. Best rooting performance was observed in 1/2MS medium supplemented with 0.1mg/1 NAA after 10 days of incubation in 16 hr photoperiod at $25{\pm}1{\circ}C$. Mean number of roots per shoot was 6 and the mean root length was 252mm. Rooted plantlets were transferred into sterile coir dust:sand (1:4) mixture and maintained in a humid chamber for two weeks, They were gradually exposed to the natural environment. After three weeks they were transferred to pots containing coir dust:sand (1:2) mixture for further development where the 90% survival was observed.

  • PDF

CO2 추적가스 농도감소법을 이용한 공동주택의 급·배기구 조합에 따른 환기 성능 분석 (Evaluation of Ventilation Performances for Various Combinations of Inlets and Outlets in a Residential Unit through CO2 Tracer-Gas Concentration Decay Method)

  • 이상윤;이수만;김종엽;김길태;곽병창
    • 토지주택연구
    • /
    • 제14권4호
    • /
    • pp.111-120
    • /
    • 2023
  • 주거 공간에서의 시간 증가와 외부 미세먼지, 황사 등의 영향 그리고 코로나 19 이후에 실내 공기질에 대한 중요성이 점차 중요해지고 있다. 이를 해결하기 위해 주거 공간에서 기계환기의 영향이 중요해지고 있고, 국내에서는 시간당 환기횟수 0.5회에 대한 법적 기준이 있다. 하지만, 급배기구의 위치는 구체적인 기준이 없어서 관습적으로 사용되고 있다. 본 연구에서는 급배기구 위치에 따른 주거 공간의 환기 성능 영향을 분석하고자 하였다. 실험은 외부 영향을 최소화할 수 있는 대형 챔버안에 있는 목업주택에서 추적가스법 중 농도감소법을 이용해서 실제 현장시험을 진행하여 실험을 진행했다. 실험 결과 거실 공간에서 일반적으로 사용하는 급기구 2개, 배기구 2개 조합은 급기 1개 배기 2개 조합보다 공기연령이 낮았으며, 급기와 배기를 1개씩 사용하는 것보다 급기나 배기를 여러개 사용하는 것이 측정점에서 오차율이 적어 실내 환기성능이 유사한 것을 확인했다.

DRUM impactor를 이용한 대기 입자상 물질 중 원소성분의 입경분포 특성 : 제주도 고산지역의 2002년 봄철 (3.29-5.30) 측정 연구 (Size Distributions of Trace Elements in Airborn Particulates Collected using Drum impactor at Gosan, Jeju Island : Measurements in Springtime 2002)

  • 한진석;문광주;류성윤;안준영;공부주;홍유덕;김영준
    • 한국대기환경학회지
    • /
    • 제20권4호
    • /
    • pp.555-569
    • /
    • 2004
  • Size -segregated measurements of aerosol composition using 8-stage DRUM impactor are used to determine the transport of natural and anthropogenic aerosols at Gosan site from 29 March to 30 May in 2002. Separation of ambient aerosols by DRUM impactor offers many Advantages over other standard filtration techniques. Some of the most important advantages are the ability to segregate into details by particle tire, to better preserve chemical integrity since the air stream doesn't pars through the deposit, to collect samples as a function of time, and to have a wide variety of impaction surfaces available to match analytical needs. Although the transport of Yellow sand is a well-known phenomenon in springtime, the result of measurement shows that not only soil dust but also anthropogenic aerosols, including sulfur, enriched trace metals such as Pb, Ni, Zn. Cu, Cr, As, Se, Br, are transported to Gosan in springtime. This study combines the size- and time-resolved aerosol composition measurements with isentropic, backward air-mass trajectories in order to identify some potential source regions of anthropogenic aerosols. As a result, during the NYS period, the average concentration of PM$_{10}$ was 46$\mu\textrm{g}$/㎥, Si, Al. S, Fe, Cl, K, Ca were higher than 1,000 ng/㎥ and Ti was about 100 ng/㎥. The concentrations of Zn, Mn, Cu. Pb, Br, Rb, V, Cr, Ni. At, Se ranged between 1 and 70 ng/㎥. More than 50% typical soil elements, tuck as Al, Si, Fe, Cd. Ti, Cr, Cu, Br. were distributed in a coarse particle range(5.0-12${\mu}{\textrm}{m}$). In other hand, anthropogenic pollutants, luck as S, N, Vi, were mainly distributed in a fine particle range (0.09-0.56${\mu}{\textrm}{m}$). During the YS period, PM$_{10}$ increased about 8 times than NYS period, and main soil elements, such as Al, Si, S, K, V, Mn, Fe also doubled in coarse particle range (1.15-12${\mu}{\textrm}{m}$). But Zn, As, Pb, Cu and Se, which distributed in the time aerosols (0.09-0.56${\mu}{\textrm}{m}$), were on the same level with or decreased than NYS period. Finally. except the YS Period, coarse particles (2.5-12${\mu}{\textrm}{m}$) are inferred to be influenced by soil, coal combustion, waste incineration, ferrous and nonferrous sources through similar pathways with Yellow Sand. But fine particles have different sources, such as coal combustion, gasoline vehicle, biomass burning, oil or coal combustion, nonferrous and ferrous metal sources, which are transported from China, Korea peninsula and local sources.ces.