• Title/Summary/Keyword: Yard Crane

Search Result 169, Processing Time 0.024 seconds

Conatiner Terminal Operation Method for the Efficient Dual Cycle Operation (효율적인 듀얼 사이클을 위한 터미널 운영방법)

  • Chung, Chang-Yun;Shin, Jae-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.110-111
    • /
    • 2010
  • Recently, container terminal managers make an experiment on the double cycle and dual cycle operation, which ship loading and unloading were carried out simultaneously, for increasing the productivity of quay side. However, if we make an experiment on dual cycle operation in a real job site, the efficiency is poor up to terminal operation method as YTs(Yard Tractors)' allocation method, QCs(Quay Cranes)' working speed, and position of export containers. So, this paper examine more efficient terminal operation method, when terminal uses dual cycle operation.

  • PDF

A Study on the Application of Transfer Equipment Pooling Systems for Enhancing Productivity at Container Terminals (컨테이너터미널에서 생산성 향상을 위한 이송장비 풀링시스템 적용방안에 관한 연구)

  • Cha, Sang-Hyun;Noh, Chang-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.399-407
    • /
    • 2014
  • Due to the increase of container terminals, as the volume of terminals become distributed, the competition of preserving existing volume and inviting new volume are becoming fierce, and various ways for processing terminal volume and inviting volume are being sought. Container terminal efforts to maximize efficiency in order to improve the volume handling capability and productivity by both expansion of the latest equipment and development of the latest terminal system. There are a variety of factors that influence the improvement of productivity at container terminals. Among them, in the case of yard transfer equipment, if it were to convert from the method of a Yard Tractor(YT) being fixed allocated to a certain Gantry Cranes(GC) to a Pooling System that processes in a method that properly distributes and allocates a Yard Tractor(YT) to multiple Gantry Cranes(GC), the terminal productivity and the fusibility of YT may be increased. The KPI which is an indicator for the productivity at container terminals is GC productivity and since GC productivity cannot exceed the speed of physical GC operations, a Pooling System is applied to increase productivity which its meaning and effect is massive. Here in the Report, we produce the Pooling Algorithm system to improve the efficiency of the transported equipments in container terminal which is actually applying for this method and have compared Non pooling system with Pooling system in the fields. By introducing a transfer equipment pooling system and enhancing the productivity compared to other terminals, it may become an essential factor for increasing the continuous service quality and profitability in terms of terminal business.

Effective Operation Strategies for Pooling Yard Tractors m Container Terminals (컨테이너터미널에서 야드 트랙터 풀링시스템을 적용한 효율적인 운영 전략)

  • Shin, Jae-Young;Kwon, Sun-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.401-407
    • /
    • 2009
  • The improvement in the terminal productivity plays a key role for container terminals to be more competitive. The productivity of yard tractors(YT) is one of the most important factor accelerating the terminal productivity. Thus, YT pooling system is newly introduced in container terminals for increasing the YT productivity. Recently, the terminals in Korea tend to adopt YT pooling system. This paper proposes the important decision factors for YT pooling work space and several types of formulations according to states of container terminals.

An Economical Efficiency Comparison for Extend Method of Container Terminal Yard Scale followed by the Call of the Mega Ship (초대형 컨테이너선박의 기항에 따른 컨테이너 터미널 장치장 규모 확대방안의 경제성 비교)

  • Song, Yong-Seok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.5
    • /
    • pp.353-359
    • /
    • 2009
  • Most domestic container terminals are lack of container storage capacity compared to the throughput of container. The main reason is the difference between the theoretical capacity applied to the development of terminals and the real capacity of a berth Another reason seems to be the increase of the container crane in number per berth to match the need for the getting larger vessel, which is resulted from the increase of the berth capacity from the start. This study, therefore, aims to suggest the economic size of container yard by comparing the existing one. For this the berth capacity was recalculated, the required yard size derived considering up to 10,000TEU vessel and then cost comparison done.

Real-Time YT Tracking and Analysis of Yard Congestion in Pooling Operation Based on RTLS (RTLS기반의 풀링운영에서 실시간 YT 추적과 장치장 혼잡도 분석)

  • Ha, Chang-Seung;Seo, Moon-Kyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2603-2609
    • /
    • 2010
  • Currently at port, various trials about the improvement of operating method for raising operation efficiency of transferring equipment are made, but if the delay is occurred to quay crane due to individual team method in YT operation, the problem which even arranged YT should stop the work. Therefore, this study installed wireless location determining device within yard and measured the location of YT with real-time. Also, in order to raise the location determination effect, we converted operating method into pooling operation method and arranged YT. Through this study, we can trace the movement of YT with real-time and the work control method which anlayzes and evaluates congestion of yard objectively is prepared.

The Efficiency of Container Terminals in Busan and Gwangyang Port (부산항과 광양항의 컨테이너 터미널의 효율성)

  • Mo, Su-Won;Lee, Kwang-Bae
    • Journal of Korea Port Economic Association
    • /
    • v.26 no.2
    • /
    • pp.139-149
    • /
    • 2010
  • This paper analyses the relative efficiency of 13 container terminals based on the data for the period 2003-8 to offer a fresh perspective. There has been abundant empirical research undertaken on the technical efficiency of Busan and Gwangyang port. Most studies have focused on the use of parametric and non-parametric techniques to analyse overall technical efficiency. Here, the framework assumes that terminals use two input to produce one output; the former includes container yard and container crane and the latter container volume. Jarque-Bera indicates that three variables are not normally distributed and the positive skewness shows that all the variables have long right tails. This means there are many small-scaled container terminals. This paper also employs heteroscedastic Tobit model to show the effect of the explanatory variables on the container terminal efficiencies. The Tobit model shows that both container yard and container cranes have positive effect on the container terminal efficiency, but container yard has a higher impact on the efficiency than the container crane.

Development of Operation Strategy to improve Efficiency for Twin Automated Transfer Crane in an Automated Container Terminal

  • Park, Byung-Joo;Choi, Hyung-Rim
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.605-611
    • /
    • 2007
  • In order to become a mega hub port, major ports all over the world are making every effort to enhance their productivity through efficiency of internal operation. Accordingly, in order to enhance the competitiveness of a container terminal, an automated container terminal is considered as the best alternative. An automated container terminal is using such automated handling equipment as AGV(Automated Guided Vehicles) and ATC(Automated Transfer Crane). The efficient equipment operation plays a critical role in enhancing the productivity of an automated container terminal. In an automated container terminal, the most important equipments are AGV and ATC. Each block of containers with a vertical layout is generally operating two ATCs. The two ATCs can be crossed or not at each block. In the case of operating crossover ATC, it has an advantage of high flexibility that ATC work is possible at both TP(Transfer Point) of each block. But it has also a disadvantage that the yard has to be operated at a low storage level of containers in the terminal yard. Recently, for automated container terminals, which are being prepared for opening in Korea, they plan to use uncrossed twin ATC in order to make the storage level of their yards high at a low cost. Therefore, studies have to be made in order to increase the efficiency of twin ATC system based on the flexibility that the crossover ATC system has. This research aims to suggest an operation strategy to improve efficiency of twin ATC at each storage block in a yard.

A Study on RFID Based QoS Guarantee between O/D Container terminals for Biz-Model (RFID을 활용한 기종점 컨테이너 터미널간 QoS 보장을 위한 비즈니스 모델 연구)

  • Park Doo-Jin;Kim Hyun;Nam Ki-Chan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.303-309
    • /
    • 2005
  • This paper will suggest how can we guarantee terminal QoS like ship waiting time ratio and ship residing time applying RFID(Radio Frequence Identification) technology, raising up rapidly as a fundamental solution of new growing industry, to port information system. Also, lead time of whole port logistics can be decreased for reduction of loading & discharging time resulted from productivity improvement of Twinlift G/C(Gantry Crane) and Y/T(Yard Tract) etc as applying RFID technology to terminal operation. The purpose of this paper is suggesting of new business model of u-Port that port QoS can be guaranteed from mutual agreement of each terminals RFID technology applied and focusing on the implementation plan.

  • PDF

A Study on the Resource Allocation Strategies of the Container Terminals Using Simulation Technique (시뮬레이션 기법을 이용한 컨테이너 터미널의 자원할당 전략에 관한 연구)

  • 장성용
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.4
    • /
    • pp.61-72
    • /
    • 1999
  • This paper presents an estimation method of container handling capacity and selection of resource allocation strategies of container terminals using the computer simulation models. Simulation models are developed to model container terminal consisting of 4 berths considering the berth allocation strategies, crane allocation strategies and the total number of container cranes using Arena simulation package. The proposed models do not consider the yard operations and gate operations. All the input parameters for the models are estimated on the basis of the existing container terminal operation data and the planning data for the automated container terminal planned by Korean government. Four berth allocation strategies and three crane allocation strategies are considered. The total number of container cranes considered ranges from 12 to 15. Non-terminating simulation techniques are utilized for the performance comparison among alternatives. The performance measures such as average ship turnaround time, average ship waiting time, average ship service time, the number of containers handled per year, and the number of ships processed per year are used. The result shows that the berth allocation strategy minimizing the sum of the number of ships waiting, the number of busy container cranes and number of ships handled performs better than any other berth allocation strategies. In addition, the crane allocation strategy allocating up to 5 container cranes per berth performs better than any other crane allocation strategies. Finally there are no significant performance differences among the alternatives consisting of different total number of container cranes allocated.

  • PDF

A Systematic Analysis on the Operation of Busan Container Terminal by Computer Simulation (시뮬레이션에 희한 부산컨테이너 터미널 운영의 체계적인 분석)

  • Kim Hyun;Lee Cheol-Yeong
    • Journal of Korean Port Research
    • /
    • v.2 no.1
    • /
    • pp.29-73
    • /
    • 1988
  • Since the middle of 1950's when sea transportation service by container ship was established, containerization has been rapidly spread over the world with realization of intermodalism, and becomes an index of economy growth of a country. Our country has established Pusan Container Terminal at Pusan harbour in 1978 in step with worldwide trend of containerization, and is constructing New Container Terminal at Pusan outharbour which will be completed in 1990. This paper aims to make a quantitative analysis of the Pusan Container Terminal system through the computer simulation, especially focusing on its subsystems such as ship stevedoring system, storage system and transfer system. First, the capacity of various subsystems are evaluated and it is checked whether the current operation is being performed effectively through the computer simulation. Secondly, the suggestion is presented to improve the operation by considering the throughput that Pusan Container Terminal will have to accept until 1990, when New Container Terminal will be completed. The results are as follows ; 1) As the inefficiency is due to the imbalance between various subsystems at Pusan Container Terminal on the basis of about 1.2 million TEU of container traffic, transfer equipment level must be up to 33% for transfer crane, and free period must be reduced into 4/5 days for export/import. 2) On the basis of about 1.4 million TEU of container traffic, transfer equipment level must be up to $12\%$ for gantry crane, $11\%$ for straddle carrier and $66\%$ for transfer crane, and free period must be reduced into 3/4 days for export/import. 3) On the basis of about 1.7 million TEU of container traffic, transfer equipment level must be up to $25\%$ for gantry crane, $28\%$ for straddle carrier and $100\%$ for transfer crane, and free period must be reduced into 3/4 days for export/import. 4) On the basis of about 2 million TEU of container traffic, transfer equipment level must be up to $25\%$ for gantry crane, $30\%$ for straddle carrier and $110\%$ for transfer crane, and free period must be reduced into 2/3 days for export/import, and it is necessary to enlarge storage yard.

  • PDF