• 제목/요약/키워드: YOLO-V5

검색결과 44건 처리시간 0.024초

ANALYSIS OF THE FLOOR PLAN DATASET WITH YOLO V5

  • MYUNGHYUN JUNG;MINJUNG GIM;SEUNGHWAN YANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제27권4호
    • /
    • pp.311-323
    • /
    • 2023
  • This paper introduces the industrial problem, the solution, and the results of the research conducted with Define Inc. The client company wanted to improve the performance of an object detection model on the floor plan dataset. To solve the problem, we analyzed the operational principles, advantages, and disadvantages of the existing object detection model, identified the characteristics of the floor plan dataset, and proposed to use of YOLO v5 as an appropriate object detection model for training the dataset. We compared the performance of the existing model and the proposed model using mAP@60, and verified the object detection results with real test data, and found that the performance increase of mAP@60 was 0.08 higher with a 25% shorter inference time. We also found that the training time of the proposed YOLO v5 was 71% shorter than the existing model because it has a simpler structure. In this paper, we have shown that the object detection model for the floor plan dataset can achieve better performance while reducing the training time. We expect that it will be useful for solving other industrial problems related to object detection in the future. We also believe that this result can be extended to study object recognition in 3D floor plan dataset.

Lightweight high-precision pedestrian tracking algorithm in complex occlusion scenarios

  • Qiang Gao;Zhicheng He;Xu Jia;Yinghong Xie;Xiaowei Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권3호
    • /
    • pp.840-860
    • /
    • 2023
  • Aiming at the serious occlusion and slow tracking speed in pedestrian target tracking and recognition in complex scenes, a target tracking method based on improved YOLO v5 combined with Deep SORT is proposed. By merging the attention mechanism ECA-Net with the Neck part of the YOLO v5 network, using the CIoU loss function and the method of CIoU non-maximum value suppression, connecting the Deep SORT model using Shuffle Net V2 as the appearance feature extraction network to achieve lightweight and fast speed tracking and the purpose of improving tracking under occlusion. A large number of experiments show that the improved YOLO v5 increases the average precision by 1.3% compared with other algorithms. The improved tracking model, MOTA reaches 54.3% on the MOT17 pedestrian tracking data, and the tracking accuracy is 3.7% higher than the related algorithms and The model presented in this paper improves the FPS by nearly 5 on the fps indicator.

NVIDIA Jetson TX1 기반의 사람 표정 판별을 위한 YOLO 모델 FPS 향상 방법 (YOLO Model FPS Enhancement Method for Determining Human Facial Expression based on NVIDIA Jetson TX1)

  • 배승주;최현준;정구민
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권5호
    • /
    • pp.467-474
    • /
    • 2019
  • 본 이 논문에서는 NVIDIA Jetson TX1에서 YOLO v2 모델의 정확도를 유지하면서 FPS를 개선하는 방법을 제안한다. 일반적으로, 딥러닝 모델에서는 연산량을 줄여 처리 속도를 높이기 위해 파라미터들을 실수형에서 정수형으로 변환하여 정수 연산을 통해 속도를 높이거나 네트워크의 깊이를 감소시키는 방법을 사용한다. 그러나 이 방법들은 인식 정확도가 떨어질 수 있다. 이 논문에서는 YOLO v2 모델을 이용해 표정인식기를 개발하고 정확도 유지 시키기 위해 정수 연산이나 네트워크 깊이 감소를 사용하는 대신, 다음 세 가지 방법을 통해 연산량 및 메모리 소모를 줄인다. 첫 번째, $3{\times}3$ 필터를 $1{\times}1$ 필터로 교체하여 각 Layer 당 매개 변수 수를 9 분의 1로 줄인다. 두 번째, TensorRT의 추론 가속 기능 중 CBR (Convolution-Add Bias-Relu)을 통해 연산량을 줄이고, 마지막으로 TensorRT를 사용하여 반복되는 동일한 연산구조를 가진 레이어를 통합하여 메모리 소비를 줄인다. 시뮬레이션 결과, 기존 YOLO v2 모델에 비해 정확도는 1 % 감소했지만 FPS는 기존 3.9 FPS에서 11 FPS로 282%의 속도 향상을 보였다.

YOLO 기반의 광학 음악 인식 기술 및 가상현실 콘텐츠 제작 방법 (YOLO based Optical Music Recognition and Virtual Reality Content Creation Method)

  • 오경민;홍요섭;백건영;전찬준
    • 스마트미디어저널
    • /
    • 제10권4호
    • /
    • pp.80-90
    • /
    • 2021
  • 딥러닝에 기반한 광학 음악 인식 기술(Optical Music Recognition, OMR)을 사용하여 도출된 결과를 가상현실 (Virtual Reality, VR) 게임에 적용시킨 것을 제안한다. 딥러닝 모델은 YOLO v5를 사용했으며 검출되지 않은 객체를 검출하기 위해 Hough transform 사용, 보표 크기 수정 등을 수행한다. 출력된 결과 파일을 사용하여 VR 게임에서 BPM, 최대 콤보 수, 음정과 박자를 분석하여 사용하고 리소스 관리를 위한 Object Pooling 기술을 통해 노트가 밀리는 현상을 방지한다. 광학 음악 인식 기술을 통해 나온 음악 요소로 VR 게임을 제작하여 VR 콘텐츠 제공과 함께 광학 음악 인식의 활용성을 넓히는 것을 확인하였다.

A Study on Traffic Vulnerable Detection Using Object Detection-Based Ensemble and YOLOv5

  • Hyun-Do Lee;Sun-Gu Kim;Seung-Chae Na;Ji-Yul Ham;Chanhee Kwak
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.61-68
    • /
    • 2024
  • 횡단보도에서 발생하는 교통사고를 해결하기 위한 시도가 계속되고 있지만, 교통사고는 끊임 없이 일어나는 상황이다. 특히 노인, 장애인 등의 교통약자들은 교통사고에 노출될 위험이 더 크다. 이에 대한 문제점을 주의 깊게 볼 필요가 있다. 본 논문은 교통 약자 중 휠체어, 목발과 같은 보조 기구를 이용하는 보행자를 위해 YOLO v5 모델을 활용한 객체 탐지 기술을 제안한다. 휠체어, 목발 사용자 그리고 보행자의 이미지 크롤링, Roboflow와 Mobibity Aids 데이터를 수집하였다. 일반화 성능을 높이기 위해 데이터 증강 기법을 활용하였다. 더하여 Type 2 error를 줄이기 위해 앙상블 기법을 이용하여 Recall이 96%인 높은 성능 수치를 얻었다. 이를 통해 교통약자를 목표로 YOLO 내 단일 모델을 앙상블 할 시, 객체를 놓치지 않고 정확한 탐지 성능을 보여준다는 것을 입증하였다.

저속 특장차의 도심 자율주행을 위한 신호등 인지 알고리즘 적용 및 검증 (Implementation and Validation of Traffic Light Recognition Algorithm for Low-speed Special Purpose Vehicles in an Urban Autonomous Environment)

  • 윤원섭;김종탁;이명규;김원균
    • 자동차안전학회지
    • /
    • 제14권4호
    • /
    • pp.6-15
    • /
    • 2022
  • In this study, a traffic light recognition algorithm was implemented and validated for low-speed special purpose vehicles in an urban environment. Real-time image data using a camera and YOLO algorithm were applied. Two methods were presented to increase the accuracy of the traffic light recognition algorithm, and it was confirmed that the second method had the higher accuracy according to the traffic light type. In addition, it was confirmed that the optimal YOLO algorithm was YOLO v5m, which has over 98% mAP values and higher efficiency. In the future, it is thought that the traffic light recognition algorithm can be used as a dual system to secure the platform safety in the traffic information error of C-ITS.

이미지 속 문자열 탐지에 대한 YOLO와 EAST 신경망의 성능 비교 (A Comparison of Deep Neural Network based Scene Text Detection with YOLO and EAST)

  • 박찬용;이규현;임영민;정승대;조영혁;김진욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.422-425
    • /
    • 2021
  • 본 논문에서는 최근 다양한 분야에서 많이 활용되고 있는 YOLO와 EAST 신경망을 이미지 속 문자열 탐지문제에 적용해보고 이들의 성능을 비교분석 해 보았다. YOLO 신경망은 v3 이전 모델까지는 이미지 속 문자영역 탐지에 낮은 성능을 보인다고 알려졌으나, 최근 출시된 YOLOv4와 YOLOv5의 경우 다양한 형태의 이미지 속에 있는 한글과 영문 문자열 탐지에 뛰어난 성능을 보여줌을 확인하고 향후 문자 인식 분야에서 많이 활용될 것으로 기대된다.

YOLO 신경망 기반의 UAV 영상을 이용한 건물 객체 탐지 분석 (Analysis of Building Object Detection Based on the YOLO Neural Network Using UAV Images)

  • 김준석;홍일영
    • 한국측량학회지
    • /
    • 제39권6호
    • /
    • pp.381-392
    • /
    • 2021
  • 본 연구에서는 UAV (Unmanned Aerial Vehicle)로 촬영한 이미지를 활용하여 수치지도 지형지물 표준 코드에서 정의하고 있는 건물 8종에 대하여 딥러닝 기반의 객체 탐지 분석을 수행하였다. UAV로 촬영한 이미지 509매에 대하여 이미지 라벨링을 하였고 YOLO (You Only Look Once) v5 모델을 적용하여 학습 및 추론을 진행하였다. 실험 및 분석은 오픈소스 기반의 분석 플랫폼과 알고리즘을 적용하여 데이터를 분석하였으며 분석결과 88%~98%의 예측 확률로 건물 객체를 탐지하였다. 또한 학습데이터의 구축 및 반복 학습의 과정에서 건물 객체 탐지의 높은 정확도를 위해 필요한 학습 방식 및 모델 구축방식을 분석하였고, 학습한 모델을 다른 영상자료에 적용하는 방안을 모색하였다. 본 연구를 통해 고효율 심층 신경망과 공간정보데이터가 융합하는 모델을 제안하며 공간정보데이터와 딥러닝 기술의 융합은 향후 공간정보데이터 구축의 효율성, 분석 및 예측의 정확도 향상에 많은 도움을 제공할 것이다.

딥러닝 기반 김부각 건조 반제품 표면 검출 모델 개발 (Development of surface detection model for dried semi-finished product of Kimbukak using deep learning)

  • 김태형;권기현;김아나
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.205-212
    • /
    • 2024
  • 본 연구는 건조부각을 유탕기에 투입하기 전 로봇에 장착된 진공 그리퍼를 활용하여 건조 반제품(건조부각)을 이송하기 위한 선별 작업에서 그리핑 성공률을 향상시기키 위한 수단으로 건조부각의 앞면(고명이 있는)과 뒷면(고명이 없는) 표면을 판별하는 딥러닝 모델을 제안한다. 획득한 건조부각 440개의 RGB 영상을 기반으로 데이터 증강 기법을 적용한 후 건조부각 영역 및 표면 정보 라벨링을 진행하였다. 데이터 전처리 과정을 거친 건조부각 데이터를 기반으로 영역 검출을 위해 딥러닝 모델은 YOLO-v5을 적용하였다. 그 결과 건조부각 앞면 영역 검출의 mAP와 mIoU 값은 각각 0.98와 0.96으로 나타났으며, 뒷면의 경우 각각 1.00과 0.95로 나타났다. 앞면과 뒷면 2개의 클래스에 대하여 이진분류한 결과는 average 98.5%, recall 98.3%, precision 98.6%, F1-score 98.4%로 나타났다. 본 연구 결과를 통하여 RGB 영상을 활용한 건조부각의 표면 정보에 대한 분류가 가능하며, 추후 유탕 전 건조부각 표면 선별공정의 로봇-자동화 시스템 개발에 활용될 가능성을 확인하였다.

실시간 객체 검출 기술 YOLOv5를 이용한 스마트 엘리베이터 시스템에 관한 연구 (A Study on the Elevator System Using Real-time Object Detection Technology YOLOv5)

  • 박선빈;정유정;이다은;김태국
    • 사물인터넷융복합논문지
    • /
    • 제10권2호
    • /
    • pp.103-108
    • /
    • 2024
  • 본 논문에서는 YOLO(You only look once)v5를 기반으로 한 실시간 객체 검출 기술을 활용하여 스마트 엘리베이터 시스템을 연구하였다. 외부 엘리베이터 버튼이 눌러지면 YOLOv5 모델이 카메라 영상을 분석하여 대기자의 유무를 판별하고, 대기자가 없다고 판별되면 해당 버튼을 자동으로 취소시킨다. 연구에서는 YOLOv5와 사물인터넷에서 활용되는 MQTT(Message Queuing Telemetry Transport)를 통한 객체 탐지 및 통신 기술의 효과적인 구현 방법을 소개한다. 그리고 이를 활용하여 대기자 유무를 실시간으로 판별하는 스마트 엘리베이터 시스템을 구현하였다. 제안한 시스템은 불필요한 소비 전력을 절감하면서 CCTV(closed-circuit television)의 역할을 할 수 있다. 따라서 제안한 스마트 엘리베이터 시스템은 안전 및 치안 문제에도 기여할 수 있을 것으로 기대한다.