• Title/Summary/Keyword: YOLO(You Only Look Once

Search Result 94, Processing Time 0.028 seconds

Vehicle Acceleration and Vehicle Spacing Calculation Method Used YOLO (YOLO기법을 사용한 차량가속도 및 차두거리 산출방법)

  • Jeong-won Gil;Jae-seong Hwang;Jae-Kyung Kwon;Choul-ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.82-96
    • /
    • 2024
  • While analyzing traffic flow, speed, traffic volume, and density are important macroscopic indicators, and acceleration and spacing are the important microscopic indicators. The speed and traffic volume can be collected with the currently installed traffic information collection devices. However, acceleration and spacing data are necessary for safety and autonomous driving but cannot be collected using the current traffic information collection devices. 'You Look Only Once'(YOLO), an object recognition technique, has excellent accuracy and real-time performance and is used in various fields, including the transportation field. In this study, to measure acceleration and spacing using YOLO, we developed a model that measures acceleration and spacing through changes in vehicle speed at each interval and the differences in the travel time between vehicles by setting the measurement intervals closely. It was confirmed that the range of acceleration and spacing is different depending on the traffic characteristics of each point, and a comparative analysis was performed according to the reference distance and screen angle to secure the measurement rate. The measurement interval was 20m, and the closer the angle was to a right angle, the higher the measurement rate. These results will contribute to the analysis of safety by intersection and the domestic vehicle behavior model.

A Study on Evaluating the Possibility of Monitoring Ships of CAS500-1 Images Based on YOLO Algorithm: A Case Study of a Busan New Port and an Oakland Port in California (YOLO 알고리즘 기반 국토위성영상의 선박 모니터링 가능성 평가 연구: 부산 신항과 캘리포니아 오클랜드항을 대상으로)

  • Park, Sangchul;Park, Yeongbin;Jang, Soyeong;Kim, Tae-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1463-1478
    • /
    • 2022
  • Maritime transport accounts for 99.7% of the exports and imports of the Republic of Korea; therefore, developing a vessel monitoring system for efficient operation is of significant interest. Several studies have focused on tracking and monitoring vessel movements based on automatic identification system (AIS) data; however, ships without AIS have limited monitoring and tracking ability. High-resolution optical satellite images can provide the missing layer of information in AIS-based monitoring systems because they can identify non-AIS vessels and small ships over a wide range. Therefore, it is necessary to investigate vessel monitoring and small vessel classification systems using high-resolution optical satellite images. This study examined the possibility of developing ship monitoring systems using Compact Advanced Satellite 500-1 (CAS500-1) satellite images by first training a deep learning model using satellite image data and then performing detection in other images. To determine the effectiveness of the proposed method, the learning data was acquired from ships in the Yellow Sea and its major ports, and the detection model was established using the You Only Look Once (YOLO) algorithm. The ship detection performance was evaluated for a domestic and an international port. The results obtained using the detection model in ships in the anchorage and berth areas were compared with the ship classification information obtained using AIS, and an accuracy of 85.5% and 70% was achieved using domestic and international classification models, respectively. The results indicate that high-resolution satellite images can be used in mooring ships for vessel monitoring. The developed approach can potentially be used in vessel tracking and monitoring systems at major ports around the world if the accuracy of the detection model is improved through continuous learning data construction.

Ship Detection from SAR Images Using YOLO: Model Constructions and Accuracy Characteristics According to Polarization (YOLO를 이용한 SAR 영상의 선박 객체 탐지: 편파별 모델 구성과 정확도 특성 분석)

  • Yungyo Im;Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Youngmin Seo;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.997-1008
    • /
    • 2023
  • Ship detection at sea can be performed in various ways. In particular, satellites can provide wide-area surveillance, and Synthetic Aperture Radar (SAR) imagery can be utilized day and night and in all weather conditions. To propose an efficient ship detection method from SAR images, this study aimed to apply the You Only Look Once Version 5 (YOLOv5) model to Sentinel-1 images and to analyze the difference between individual vs. integrated models and the accuracy characteristics by polarization. YOLOv5s, which has fewer and lighter parameters, and YOLOv5x, which has more parameters but higher accuracy, were used for the performance tests (1) by dividing each polarization into HH, HV, VH, and VV, and (2) by using images from all polarizations. All four experiments showed very similar and high accuracy of 0.977 ≤ AP@0.5 ≤ 0.998. This result suggests that the polarization integration model using lightweight YOLO models can be the most effective in terms of real-time system deployment. 19,582 images were used in this experiment. However, if other SAR images,such as Capella and ICEYE, are included in addition to Sentinel-1 images, a more flexible and accurate model for ship detection can be built.

An effective license plate recognition system using deep learning technology (딥러닝 기술을 활용한 효과적인 차량 번호판 인식 시스템)

  • Jang, Sung-su;Jeong, Hyeok-june;Eun, Ae-cheoun;Ha, Young-guk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.733-735
    • /
    • 2018
  • 최근의 차량 주차관리 시설, 출입통제가 필요한 장소 그리고 도로 방범카메라를 통한 단속 등 다양한 곳에서 차량 번호판 자동 인식 기술들이 활용되고 있다. 하지만 현재 사용되고 있는 LPR(License Plate Recognition) 시스템에는 많은 장비와 비용이 들어간다는 큰 단점이 존재한다. 본 논문에서는 하나의 컴퓨터와 최소의 카메라를 가지고 할 수 있는 기계학습을 통한 영상처리를 제안하려 한다. 먼저 딥러닝 프레임워크 중 하나인 YOLO(You Only Look Once) [4]를 활용하여 자동차의 번호판 부분의 영역을 검출하고 Grayscale를 통해 햇빛 또는 조명 등의 영향을 감소시켜 번호판의 특징을 보존시킨다. 전처리 작업이 끝난 후 번호판에서 숫자를 인식 하는 부분에서는 k-NN(k-Nearest Neighbor) 알고리즘을 사용하였으며 한글 문자 인식부분은 Template Matching을 이용하였다. 제안한 알고리즘을 사용하여 기존 LPR 시스템에서 획득한 차량이미지를 대상으로 시뮬레이션 한 결과 좋은 결과를 얻을 수 있어 향후 연구 방향의 시스템 확장성의 가능성을 발견할 수 있었다.

Sub-Frame Analysis-based Object Detection for Real-Time Video Surveillance

  • Jang, Bum-Suk;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.76-85
    • /
    • 2019
  • We introduce a vision-based object detection method for real-time video surveillance system in low-end edge computing environments. Recently, the accuracy of object detection has been improved due to the performance of approaches based on deep learning algorithm such as Region Convolutional Neural Network(R-CNN) which has two stage for inferencing. On the other hand, one stage detection algorithms such as single-shot detection (SSD) and you only look once (YOLO) have been developed at the expense of some accuracy and can be used for real-time systems. However, high-performance hardware such as General-Purpose computing on Graphics Processing Unit(GPGPU) is required to still achieve excellent object detection performance and speed. To address hardware requirement that is burdensome to low-end edge computing environments, We propose sub-frame analysis method for the object detection. In specific, We divide a whole image frame into smaller ones then inference them on Convolutional Neural Network (CNN) based image detection network, which is much faster than conventional network designed forfull frame image. We reduced its computationalrequirementsignificantly without losing throughput and object detection accuracy with the proposed method.

Statistical Analysis of Major Accident Reports and Development of a Real-time Detection Model for Portable Ladder and Safety Helmet (이동식사다리 중대재해 통계 분석 및 이동식사다리와 안전모 실시간 탐지 기계학습 모델 개발)

  • Choi, Seung-Ju;Jung, Kihyo
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • The leading source of occupational fatalities is a portable ladder in Korea because it is widely used in industry as work platform. In order to reduce victims, it is necessary to establish preventive measures for the accidents caused by portable ladder. Therefore, this study statistically analyzed injury death by portable ladder for recent 10 years to investigate the accident characteristics. Next, to monitor wearing of safety helmet in real-time while working on a portable ladder, this study developed an object detection model based on the You Only Look Once(YOLO) architecture, which can accurately detect objects within a reasonable time. The model was trained on 6,023 images with/without ladders and safety helmets. The performance of the proposed detection model was 0.795 for F1 score and 0.843 for mean average precision. In addition, the proposed model processed at least 25 frames per second which make the model suitable for real-time application.

Implementation of an Intelligent Video Detection System using Deep Learning in the Manufacturing Process of Tungsten Hexafluoride (딥러닝을 이용한 육불화텅스텐(WF6) 제조 공정의 지능형 영상 감지 시스템 구현)

  • Son, Seung-Yong;Kim, Young Mok;Choi, Doo-Hyun
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.719-726
    • /
    • 2021
  • Through the process of chemical vapor deposition, Tungsten Hexafluoride (WF6) is widely used by the semiconductor industry to form tungsten films. Tungsten Hexafluoride (WF6) is produced through manufacturing processes such as pulverization, wet smelting, calcination and reduction of tungsten ores. The manufacturing process of Tungsten Hexafluoride (WF6) is required thorough quality control to improve productivity. In this paper, a real-time detection system for oxidation defects that occur in the manufacturing process of Tungsten Hexafluoride (WF6) is proposed. The proposed system is implemented by applying YOLOv5 based on Convolutional Neural Network (CNN); it is expected to enable more stable management than existing management, which relies on skilled workers. The implementation method of the proposed system and the results of performance comparison are presented to prove the feasibility of the method for improving the efficiency of the WF6 manufacturing process in this paper. The proposed system applying YOLOv5s, which is the most suitable material in the actual production environment, demonstrates high accuracy (mAP@0.5 99.4 %) and real-time detection speed (FPS 46).

A Web-GIS Based Monitoring Module for Illegal Dumping in Smart Cities

  • Han, Taek-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_1
    • /
    • pp.927-939
    • /
    • 2022
  • This study was conducted to develop a Web-GIS based monitoring module of smart city that can effectively respond, manage and improve situation in all stages of illegal dumping management on a city scale. First, five technologies were set for the core technical elements of the module configuration. Five core technical elements are as follows; video screening technology based on motion vector analysis, human behavior detection based on intelligent video analytics technology, mobile app for receiving civil complaints about illegal dumping, illegal dumping risk model and street cleanliness map, Web-GIS based situation monitoring technology. The development contents and results for each set of core technical elements were evaluated. Finally, a Web-GIS based 'illegal dumping monitoring module' was proposed. It is possible to collect and analyze city data at the local government level through operating the proposed module. Based on this, it is able to effectively detect illegal dumpers at relatively low cost and identify the tendency of illegal dumping by systematically managing habitual occurrence areas. In the future, it is expected to be developed in the form of an add-on module of the smart city integration platform operated by local governments to ensure interoperability and scalability.

A vision-based system for inspection of expansion joints in concrete pavement

  • Jung Hee Lee ;bragimov Eldor ;Heungbae Gil ;Jong-Jae Lee
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.309-318
    • /
    • 2023
  • The appropriate maintenance of highway roads is critical for the safe operation of road networks and conserves maintenance costs. Multiple methods have been developed to investigate the surface of roads for various types of cracks and potholes, among other damage. Like road surface damage, the condition of expansion joints in concrete pavement is important to avoid unexpected hazardous situations. Thus, in this study, a new system is proposed for autonomous expansion joint monitoring using a vision-based system. The system consists of the following three key parts: (1) a camera-mounted vehicle, (2) indication marks on the expansion joints, and (3) a deep learning-based automatic evaluation algorithm. With paired marks indicating the expansion joints in a concrete pavement, they can be automatically detected. An inspection vehicle is equipped with an action camera that acquires images of the expansion joints in the road. You Only Look Once (YOLO) automatically detects the expansion joints with indication marks, which has a performance accuracy of 95%. The width of the detected expansion joint is calculated using an image processing algorithm. Based on the calculated width, the expansion joint is classified into the following two types: normal and dangerous. The obtained results demonstrate that the proposed system is very efficient in terms of speed and accuracy.

A Deep Neural Network Technique for Automatic Measurement of Tibial Plateau Angle from Animal X-ray Images (동물 X-ray 영상에서 경골고원각도 자동 검출을 위한 심층신경망 기법 )

  • Jimin Kim;Hyungkyu Kim;Jeonghyeon Ryu;Sunju Lee;Hojoon Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.579-580
    • /
    • 2023
  • 본 논문에서는 동물의 십자인대 질환의 진단지표인 경골고원각도(TPA)를 자동으로 측정하는 딥러닝 소프트웨어 기법을 제안한다. 동물 X-ray 영상에서 나타나는 피사체의 위치와 형태에 대한 다양한 변이는 TPA(Tibial Plateau Angle) 지표 산출에 필요한 특징점 검출과정에서 학습 효율을 현저하게 저하시킨다. 이에 본 연구에서는 YOLO(You Only Look Once) 기반 모델을 사용하여 일차적으로 경골영역의 분할 단계를 수행하고, 이어서 경골 상단부의 과간융기와 복사뼈의 중심점을 찾는 과정을 Resnet 기반의 특징점 추출 모듈로서 구현함으로써 학습의 효율과 지표 검출의 정확도를 향상시켰다. 총 201 개의 실제 X-ray 영상을 사용하여 학습 속도와 영역 분할 및 특징점 추출의 정확도 측면을 고려함으로 제안된 이론의 타당성을 실험적으로 평가하였다.