• Title/Summary/Keyword: YOLO(You Only Look Once

Search Result 94, Processing Time 0.017 seconds

Implementation of a real-time public transportation monitoring system (실시간 대중교통 모니터링 시스템 구현)

  • Eun-seo Oh;So-ryeong Gwon;Joung-min Oh;Bo Peng;Tae-kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.4
    • /
    • pp.9-19
    • /
    • 2024
  • In this paper, a real-time public transportation monitoring system is proposed. The proposed system was implemented by developing a public transportation app and utilizing optical sensors, pressure sensors, and an object detection algorithm. Additionally, a bus model was created to verify the system's functionality. The proposed real-time public transportation monitoring system has three key features. First, the app can monitor congestion levels within public transportation by detecting seat occupancy and the total number of passengers based on changes in optical and pressure sensor readings. Second, to prevent errors in the optical sensor that can occur when multiple passengers board or disembark simultaneously, we explored the possibility of using the YOLO object detection algorithm to verify the number of passengers through CCTV footage. Third, convenience is enhanced by displaying occupied seats in different colors on a separate screen. The system also allows users to check their current location, available public transportation options, and remaining time until arrival. Therefore, the proposed system is expected to offer greater convenience to public transportation users.

Transfer learning in a deep convolutional neural network for implant fixture classification: A pilot study

  • Kim, Hak-Sun;Ha, Eun-Gyu;Kim, Young Hyun;Jeon, Kug Jin;Lee, Chena;Han, Sang-Sun
    • Imaging Science in Dentistry
    • /
    • v.52 no.2
    • /
    • pp.219-224
    • /
    • 2022
  • Purpose: This study aimed to evaluate the performance of transfer learning in a deep convolutional neural network for classifying implant fixtures. Materials and Methods: Periapical radiographs of implant fixtures obtained using the Superline (Dentium Co. Ltd., Seoul, Korea), TS III(Osstem Implant Co. Ltd., Seoul, Korea), and Bone Level Implant(Institut Straumann AG, Basel, Switzerland) systems were selected from patients who underwent dental implant treatment. All 355 implant fixtures comprised the total dataset and were annotated with the name of the system. The total dataset was split into a training dataset and a test dataset at a ratio of 8 to 2, respectively. YOLOv3 (You Only Look Once version 3, available at https://pjreddie.com/darknet/yolo/), a deep convolutional neural network that has been pretrained with a large image dataset of objects, was used to train the model to classify fixtures in periapical images, in a process called transfer learning. This network was trained with the training dataset for 100, 200, and 300 epochs. Using the test dataset, the performance of the network was evaluated in terms of sensitivity, specificity, and accuracy. Results: When YOLOv3 was trained for 200 epochs, the sensitivity, specificity, accuracy, and confidence score were the highest for all systems, with overall results of 94.4%, 97.9%, 96.7%, and 0.75, respectively. The network showed the best performance in classifying Bone Level Implant fixtures, with 100.0% sensitivity, specificity, and accuracy. Conclusion: Through transfer learning, high performance could be achieved with YOLOv3, even using a small amount of data.

Real-Time Comprehensive Assistance for Visually Impaired Navigation

  • Amal Al-Shahrani;Amjad Alghamdi;Areej Alqurashi;Raghad Alzahrani;Nuha imam
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.1-10
    • /
    • 2024
  • Individuals with visual impairments face numerous challenges in their daily lives, with navigating streets and public spaces being particularly daunting. The inability to identify safe crossing locations and assess the feasibility of crossing significantly restricts their mobility and independence. Globally, an estimated 285 million people suffer from visual impairment, with 39 million categorized as blind and 246 million as visually impaired, according to the World Health Organization. In Saudi Arabia alone, there are approximately 159 thousand blind individuals, as per unofficial statistics. The profound impact of visual impairments on daily activities underscores the urgent need for solutions to improve mobility and enhance safety. This study aims to address this pressing issue by leveraging computer vision and deep learning techniques to enhance object detection capabilities. Two models were trained to detect objects: one focused on street crossing obstacles, and the other aimed to search for objects. The first model was trained on a dataset comprising 5283 images of road obstacles and traffic signals, annotated to create a labeled dataset. Subsequently, it was trained using the YOLOv8 and YOLOv5 models, with YOLOv5 achieving a satisfactory accuracy of 84%. The second model was trained on the COCO dataset using YOLOv5, yielding an impressive accuracy of 94%. By improving object detection capabilities through advanced technology, this research seeks to empower individuals with visual impairments, enhancing their mobility, independence, and overall quality of life.

Implementation of Smart Shopping Cart using Object Detection Method based on Deep Learning (딥러닝 객체 탐지 기술을 사용한 스마트 쇼핑카트의 구현)

  • Oh, Jin-Seon;Chun, In-Gook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.262-269
    • /
    • 2020
  • Recently, many attempts have been made to reduce the time required for payment in various shopping environments. In addition, for the Fourth Industrial Revolution era, artificial intelligence is advancing, and Internet of Things (IoT) devices are becoming more compact and cheaper. So, by integrating these two technologies, access to building an unmanned environment to save people time has become easier. In this paper, we propose a smart shopping cart system based on low-cost IoT equipment and deep-learning object-detection technology. The proposed smart cart system consists of a camera for real-time product detection, an ultrasonic sensor that acts as a trigger, a weight sensor to determine whether a product is put into or taken out of the shopping cart, an application for smartphones that provides a user interface for a virtual shopping cart, and a deep learning server where learned product data are stored. Communication between each module is through Transmission Control Protocol/Internet Protocol, a Hypertext Transmission Protocol network, a You Only Look Once darknet library, and an object detection system used by the server to recognize products. The user can check a list of items put into the smart cart via the smartphone app, and can automatically pay for them. The smart cart system proposed in this paper can be applied to unmanned stores with high cost-effectiveness.