• Title/Summary/Keyword: YBCO wire

Search Result 54, Processing Time 0.025 seconds

Effects of the insulation thickness on the magnetization loss of the multi-stacked YBCO coated conductor (절연거리 변화에 따른 적층된 YBCO 도체의 자화손실 변화)

  • Lim, Hyoung-Woo;Lee, Hee-Joon;Cha, Guee-Soo;Lee, Ji-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.95-97
    • /
    • 2005
  • Loss in the multi-stacked HTS wires are affected by a number of factor, such as, number of wires used in the stack, direction of external magnetic field and insulation thickness between the wire. This paper examines the effects of the insulation thickness on the magnetization loss of the multi-stacked YBCO coated conductor. Measurements of magnetization loss were performed using 4 different typo of multi-stacked wires and under various angle of external magnetic field. Test results show that loss density per unit volume increased for YBCO coated conductors when thickness of insulation increased. Loss density per unit volume decreased for YBCO coaled conductors when stacking number of tapes increased.

  • PDF

Preparation of Crack-free YBCO Films by EPD on Silver

  • Soh, Dea-wha;Li, Young-mae;Korobova N.;Park, Sung-Jai
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.27-30
    • /
    • 2003
  • Electrophoretic deposition (EPD) of alcohol YBCO suspensions on the Ag wire electrode is studied. Poly(ethylene glycol) was coordinated to a structure formed by the EPD process with YBCO particles. The suspension is characterized in terms of zeta potential and conductivity. The d.c electric fields of 200-300 V/cm are applied for 1-10 min. The optimal condition for the EPD allows modifying the properties and microstructure of the deposited films. Superconducting coatings with nanometer-sized pores and a preferred orientation along the c-axis were prepared from the result with chemically modified precursor solution. In contrast, YBCO coatings of submicrometer-sized pores and randomly orientated grains were prepared from the solution without PEG.

Electrophoretic Deposition of YBCO powder in mixed suspension solution of iso-prophanol and iso-buthanol (이소프로판올과 이소부탄을 용매에서의 YBCO 분말 영동전착)

  • ;;;Korobova N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.288-291
    • /
    • 2001
  • It is very important to select suspension solution for forming electrophoretic deposited YBCO thick film, because it is heavily affected to its superconducting properties. In this paper, high-temperature superconductor films of YBa$_2$Cu$_3$$O_{7-x}$ were fabricated by electrophoretic deposition (EPD) from alcohol-based suspension such as iso-propanol, iso-butanol, and their mixture. For the formation of YBCO dense and adherent coating on a silver wire by EPD, 1% PEG(1000) 2 $m\ell$, as a additive for making their surface crack-free, was used for electrophoresis. As a results, the cracks were considerably decreased and the superconducting critical current density (J$_{c}$) without/with PEG was 1200 A/$\textrm{cm}^2$ and 2020 A/$\textrm{cm}^2$, which films deposited in mix ism-propanol and iso-butanol suspension.ion.

  • PDF

Preparation of Crack-free HTS YBCO Films by EPD Method

  • Soh, Dea-Wha;Li Yingmei;Nataly Korobova
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.5
    • /
    • pp.6-9
    • /
    • 2003
  • Electrophoretic deposition (EPD) of alcohol YBCO suspensions on the Ag wire electrode is studied. Polyethyleneglycol was coordinated to a structure formed by the EPD process with YBCO particles. The d.c electric fields of 200-300 V/cm are applied for 1-10 min. The optimal condition for the EPD allows modifying the properties and microstructure of the deposited films. Superconducting coatings with nanometer-sized pores and a preferred orientation along the caxis were prepared from the result with chemically modified precursor solution. In contrast, YBCO coatings of submicrometer-sized pores and randomly orientated grains were prepared from the solution without PEG.

A study on the bonding properties of YBCO coated conductors with stainless steel stabilizer (스테인레스 강 안정화 YBCO 초전도선재의 접합 특성에 관한 연구)

  • Kim, Tae-Hyung;Oh, Sang-Soo;Song, Kyu-Jeong;Kim, Ho-Sup;Ko, Rock-Kil;Shin, Hyung-Seop
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.262-263
    • /
    • 2005
  • For mechanical and electrical stability and environment protection, Cu and stainless steel stabilizer is laminated to Ag layer to produce a composite neutral-axis(N-A) architecture in which the YBCO layer is centered between the oxide buffered metallic substrate and stabilizer strip lamination. this architecture allows the wire to meet operational requirements including stresses at cryogenic temperature, winding tensions, mechanical bending requirements thermal and electrical stability under fault conditions. we have experimentally studied mechanical properties of laminated stainless steel stabilizer on YBCO coated conductors. we have laminated YBCO coated conductors by continuous dipping soldering process. we have investigated lamination interface between solder and stabilizer, YBCO coated conductor. we evaluated bonding properties tensile / shear bonding strength, peeling strength laminated YBCO coated conductors.

  • PDF

A study on the bonding properties of YBCO coated conductors with stabilizer tape (안정화 선재의 YBCO 초전도 접합 특성)

  • Kim Tae-Hyung;Oh Sang-Soo;Ha Dong-Woo;Kim Ho-Sup;Ko Rock-Kil;Shin Hyung-Seop;Park Kyung-Chae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.23-26
    • /
    • 2006
  • For mechanical and electrical stability and environment protection. Cu and stainless steel stabilizers are laminated to a Ag layer to produce a composite neutral-axis(N-A) architecture in which the YBCO layer is centered between the oxide buffered metallic substrate and stabilizer strip lamination. This architecture allows the wire to meet operational requirements including stresses at cryogenic temperature. winding tensions as well as mechanical bending requirements including thermal and electrical stability under fault current conditions. We have experimentally studied mechanical properties of the laminated stainless steel and Cu stabilizers on YBCO coated conductors. We have laminated YBCO coated conductors by continuous dipping soldering process. We have investigated lamination interface between solder and stabilizer of the YBCO coated conductor. We evaluated bonding properties. tensile / shear bonding strength. and peeling strength laminated YBCO coated conductors.

Current Limiting Characteristics according to Applied Voltage Increase of Resistive-type SFCL using YBCO Coated Conductor (YBCO Coated Conductor를 이용한 저항형 전류제한기의 인가전압 증가에 따른 전류제한 특성)

  • Du, Ho-Ik;Kim, Min-Ju;Doo, Seung-Gyu;Kim, Yong-Jin;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.854-859
    • /
    • 2009
  • The YBCO coated conductor is an important element that forms the superconducting power equipment. The first advantage of applying YBCO coated conductor to superconducting power equipment is that it can effectively addresses the normal and fault currents using less quantity of wire than when using Bi tape due to its high critical current density. Second, it can limit the fault current fast because its index value is high. so that the resistance can be produced fast when it is applied to the superconducting current limiting element. Third, the type of stabilization layer that surrounds the YBCO superconductor is selectable and the magnitude of the resistance that is produced from quenching can be adjusted. This study researched into the manufacture of current-limiting element of using YBCO coated conductor, into the characteristics of current limiter that considered by combining the manufactured element with the resistive-type superconducting fault current limiter.

Preparation of Non-cracking YBCO Films Using Eelectrophoretic Deposition

  • Soh, Deawha;Korobova, Natalya
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.117-122
    • /
    • 2004
  • Electrophoretic deposition (EPD) of alcohol YBCO suspensions on the Ag wire electrode was studied. Poly(ethylene glycol) was coordinated to a structure formed by the EPD process with YBCO particles. The suspension is characterized in terms of zeta potential and conductivity. The d.c electric fields of 200-300V/cm are applied for 1-10 min. The optimal condition for the EPD allows modifying the properties and microstructure of the deposited films. Superconducting coatings with nanometer-sized pores and a preferred orientation along the c-axis were prepared from the result with chemically modified precursor solution. In contrast, YBCO coatings of sub-micrometer sized pores and randomly orientated grains were prepared from the solution without PEG

  • PDF

The effect of deposition temperature/pressure on the superconducting properties of YBCO coated conductor (YBCO coated conductor의 초전도 특성에 미치는 박막 증착 온도/압력의 영향)

  • Park, Chan;Ko, Rok-Kil;Chung, Jun-Ki;Choi, Soo-Jeong;Song, Kyu-Jeong;Park, Yu-Mi;Shin, Ki-Chul;Shi, Dongqi;Yoo, Sang-Im
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.30-33
    • /
    • 2003
  • YBCO coated conductor, also called the 2nd generation high temperature superconducting wire, consists of oxide multi-layer hetero-epitaxial thin films. Pulsed laser deposition (PLD) is one of many film deposition methods used to make coated conductor, and is the one known to be the best to make superconducting layer so far. As a part of the effort to make long length coated conductor, the optimum deposition condition of YBCO film on single crystal substrate (SrTiO3) was investigated using PLD. Substrate temperature, oxygen partial pressure, and laser fluence were varied to find the best combination to grow high quality YBCO film.

  • PDF

The Study on the Current Limiting Characteristics of YBCO Coated Conductor with Different kinds of Stabilization Layer Applied to SFCL Using Iron Core and Coil (철심과 권선을 이용한 전류제한기에 적용시킨 안정화층이 다른 YBCO Coated Conductor의 전류제한 특성에 관한 연구)

  • Lee, Dong-Heok;Du, Ho-Ik;Kim, Yong-Jin;Han, Byoung-Sung;Yim, Seong-Woo;Han, Sang-Chul;Lee, Jeong-Phil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.788-792
    • /
    • 2010
  • The yttrium-barium-copper-oxide (YBCO) coated conductor, which supplement the fault of the existing superconducting current-limit materials YBCO thin film, bismuth-strontium-calcium-copper-oxide(BSCCO) wire and bulk, has been improved its mechanical weakness and has high index; hence, after quench YBCO coated conductor could limit the fault current effectively because of fast resistance occurrence speed. Furthermore, it has wide applicable area as an current limit material because it shows different resistance occurrence tendency by the thickness and kind of stabilization material sputtered on the superconducting layer. Therefore, many researchers are carrying out the study of application of YBCO coated conductor to superconducting fault current limiter (SFCL) for making high quality current limit element, based on resistance type. On the other hand, the study for other type except resistance type has been rarely conducted for the application of YBCO coated conductor to SFCL as an current limit element. Consequently, in this study, YBCO coated conductor with different stabilization layer Cu and Stainless steel, is applied to SFCL using iron core and coil, and examine the many index points as an current limit element, such as current limit characteristic, the tendency of resistance occurrence, response time, the temperature trend for stability.