• Title/Summary/Keyword: YBCO coated conductor

Search Result 218, Processing Time 0.025 seconds

The Preparation of High $J_c$ YBCO Films by DCA-MOD Method (DCA-MOD 법에 의한 High $J_c$ YBCO 박막의 제조)

  • Kim, Byeong-Joo;Kim, Hye-Jin;Yi, Keum-Young;Lee, Jong-Beum;Kim, Ho-Jin;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.59-64
    • /
    • 2006
  • High $J_c\;YBa_2Cu_3O_x$ superconducting films were fabricated by MOD method using fluorine-free dichloroacetic acid(DCA) as chelating solvent for preparing precursor solution. Coating solutions were prepared by dissolving Y-, Ba- and Cu-acetates in DCA solvent followed by drying in rota vapor to obtain the blue gel that is diluted in methanol and 2-methoxyethanol for adjusting the cation concentration. DCA-MOD precursor solution was coated on a single crystal(001) $LaAlO_3(LAO)$ substrate by a dip coating method with a speed of 25 mm/min. Coated films were calcined at lower temperature up to $500^{\circ}C$ in flowing oxygen atmosphere with a 7.2% humidity. Conversion heat treatment was performed at various temperatures of $780{\sim}810^{\circ}C$ for 2 h in flowing Ar gas containing 1000 ppm oxygen with a humidity of 9.45%. SEM observations showed that films have very dense microstructures for the films prepared at the temperature higher than $800^{\circ}C$ regardless of diluting solvent; methanol or 2-methoxyethanol. X-ray diffraction analysis showed that YBCO grains grew with a (001) preferred orientation. A High critical current density($J_c$) of 1.28 $MA/cm^2$(@77 K and self-field) was obtained id. the YBCO film prepared using 2-methoxyethanol as a solvent.

  • PDF

Fabrication of YBCO films in MOD processing using F-free Cu precursor solution (F-free 구리 전구용액을 이용한 YBCO 박막 제조)

  • Kim Young-Kuk;Yoo Jaimoo;Ko Jae-Woong;Chung Kuk Chae;Kim Young-Jun;Han Bong-Soo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.3
    • /
    • pp.5-8
    • /
    • 2005
  • Superconducting YBCO films were successfully fabricated by MOD process using F-free Cu precursor solution. In this study. a chemically modified precursor solution for MOD Processing was synthesized using metal-organic salts and F-free Cu precursor. It was shown that crack-free and uniform precursor films were formed after calcination in humidified oxygen atmosphere. Less than 3 hours are required to finish the calcination process. XRD measurement shows that $BaF_2,\;CuO,\;Y_2O_3$ are major constituent of precursor films. Furthermore. YBCO films without any secondary phases were successfully fabricated after annealing in wet $Ar/O_2$ prepared on a $LaA1O_3$ single crystal substrate $(10mm{\times}10mm)$ gives transport Ic of 10A at 77K. This chemical modification approach is a possible candidate for improving MOD-processing of YBCO coated conductor.

A study on the effective fault current limiting characteristics of stacked coated conductors with stainless steel stabilizer (스테인리스 스틸 안정화재를 가진 coated conductor의 적층 유무에 따른 효과적인 사고전류 제한을 위한 연구)

  • Na, J.B.;Ahn, M.C.;Kim, M.J.;Kim, Y.J.;Yang, S.E.;Park, D.K.;Kim, H.M.;Seok, B.Y.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2007
  • Coated conductor(CC) is recently in actively progress for the research and development, and its can be used various stabilizer lot the specific requirements for each application. Among various superconducting applications, coated conductor applied to superconducting fault current limiters(SFCLS) bypasses fault current to its stabilizer, where the surge is abruptly reduced ; thus, stainless steel, which has large resistivity can be a suitable stabilizer for SFCLS. Despite high n-value of the YBCO, CC stabilized with stainless steel did not effectively limit the first peak fault current. In the short circuit test results of AMSC's 344S, a half period delay was observed between the fault and the generation of resistance(60Hz). In this paper, we performed short-circuit experiments with stacked and unstacked CC and compared the test results to analyze effective fault current limiting characteristics. we compared time of the generated resistance as the fault current limiting characteristics and made the samples one is the stacked CC and the other is unstacked CC. These samples were used equal numbers of pieces of CC. In addition, comparison and analysis was made for the stacked structure by measuring fault current limiting characteristics with respect to thermal insulation by impregnating with epoxy resin.

Fabrication of Cu-Sheathed YBCO Thick Films by Screen Printing Method Using $Y_2$BaCu$O_5$ and BaC$O_3$ Powders (Y211 및 BaCO$_3$ 분말로 Screen Printing 법을 이용한 Cu-sheath의 YBCO 후막 제조)

  • 김경진;한상철;한영희;박병삼;정년호;윤희중;오제명;최희락;성태현
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.132-135
    • /
    • 2004
  • We fabricated YBCO thick films by using a screen printing method with $Y_2$BaCuO$_{5}$(Y211) and BaCO$_3$ powders on Cu-substrate in $N_2$ atmosphere. Cu-sheathed YBCO thick film process is more simple and economic than YBCO coated conductor methods. The heat treatment is performed in the range of 860 - 875 $^{\circ}C$ for 5 min in the tube furnace of $N_2$ atmosphere. The flow rate of $N_2$ gas is fixed 60 $m\ell$/min. Microstructure and phases of thick films were investigated by optical microscope, X-ray diffraction(XRD) and SEM. At heat-treatment temperature, the thick films were partially melted by liquid reaction between CuO of oxidized copper substrate and the powders screen-printed on Cu-sheath. During the heat-treatment procedure, YBCO superconducting grains nucleate.e.

  • PDF

Stability and normal zone propagation in YBCO tapes with Cu stabilizer depending on cooling conditions at 77 K

  • Kruglov, S.L.;Polyakov, A.V.;Shutova, D.I.;Topeshkin, D.A.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.14-19
    • /
    • 2020
  • Here we present the comparative experimental study of the stability of the superconducting state in 4 mm YBCO tapes with copper lamination against local heat disturbances at 77 K. The samples are either directly cooled by immersing a bare YBCO tape into a liquid nitrogen pool or operate in nearly-adiabatic conditions when the tape is covered by a 0.6 mm layer of Kapton insulation. Main quench characteristics, i.e. minimum quench energies (MQEs) and normal zone propagation (NZP) velocities for both samples are measured and compared. Minimum NZP currents are determined by a low ohmic resistor technique eligible for obtaining V - I curves with a negative differential resistance. The region of transport currents satisfying the stationary stability criterion is found for the different cooling conditions. Finally, we use the critical temperature margin as a universal scaling parameter to compare the MQEs obtained in this work for YBCO tapes at 77 K with those taken from literature for low-temperature superconductors in vacuum at 4.2 K, as well as for MgB2 wires cooled with a cryocooler down to 20 K.

Study on Transport Current Properties of HTS cable connected with SFCL by using YBCO Thin Film type wire (YBCO 박막형 선재를 이용한 초전도 전류제한기의 연계에 따른 고온 초전도 케이블의 사고전류 통전 특성에 관한 연구)

  • Lee, Dong-Hyeok;Kim, Yong-Jin;Han, Byeong-Seong;Du, Ho-Ik;Han, Sang-Cheol;Lee, Jeong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.43-43
    • /
    • 2010
  • HTS(High Temperature Superconductor) cable has a high possibility of practical use due to the possibility of low voltage and high capacity transmission caused by its lower power loss than copper cable. On the other hand, when fault current occurred, resistance increase caused by superconductivity loss, the amount of power supplies has diminished, furthermore, it's necessary to take the possible danger of damage to HITS cable into account. Therefore, an effective plan for dealing with the above problem is to link HITS cable to SFCL. In this study, we researched the possibilities of normal transport current as well as the safety of HITS cable by analyzing the properties of transport current in HITS cable connected with SFCL.

  • PDF

Characteristics of the Magnetization Loss in Stacked YBCO Coated Conductors for Large Current Application (대전류 통전을 위한 YBCO CC 적층선재의 자화손실 특성)

  • Lee, Ji-Kwang;Lim, Hyung-Woo;Cha, Guee-Soo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.27-31
    • /
    • 2007
  • For large power applications, multi-stacked tape should be used because single tape is limited in flowing demanded current capacity. Besides insulation between layers is needed for safe operation because high voltages are generated in those applications. In this study, considering those situations which mentioned above, we measure the magnetization loss in several multi-stacked tape samples having the different insulation thicknesses and various packing numbers of tape by external magnetic field having various incidence angles.

In-situ electron beam growth of $YBa_2Cu_3O_{7-x}$ coated conductors on metal substrates

  • Jo, W.;Ohnishi, T.;Huh, J.;Hammond, R.H.;Beasley, M.R.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.175-180
    • /
    • 2007
  • High temperature superconductor $YBa_2Cu_3O_{7-x}$ (YBCO) films have been grown by in-situ electron beam evaporation on artificial metal tapes such as ion-beam assisted deposition (IBAD) and rolling assisted biaxially textured substrates (RABiTS). Deposition rate of the YBCO films is $10{\sim}100{\AA}/sec$. X-ray diffraction shows that the films are grown epitaxially but have inter-diffusion phases, like as $BaZrO_3\;or\;BaCeO_3$, at their interfaces between YBCO and yttrium-stabilized zirconia (YSZ) or $CeO_2$, respectively. Secondary ion mass spectroscopy depth profile of the films confirms diffused region between YBCO and the buffer layers, indicating that the growth temperature ($850{\sim}900^{\circ}C$) is high enough to cause diffusion of Zr and Ba. The films on both the substrates show four-fold symmetry of in-plane alignment but their width in the -scan is around $12{\sim}15^{\circ}$. Transmission electron microscopy shows an interesting interface layer of epitaxial CuO between YBCO and YSZ, of which growth origin may be related to liquid flukes of Ba-Cu-O. Resistivity vs temperature curves of the films on both substrates were measured. Resistivity at room temperature is between 300 and 500 cm, the extrapolated value of resistivity at 0 K is nearly zero, and superconducting transition temperature is $85{\sim}90K$. However, critical current density of the films is very low, ${\sim}10^3A/cm^2$. Cracking of the grains and high-growth-temperature induced reaction between YBCO and buffer layers are possible reasons for this low critical current density.

  • PDF

New processing technique of TFA-MOD YBCO coated conductors using the '211' process (211 공정을 이용한 새로운 TFA-MOD YBCO 박막 선재 제조)

  • Lim, Jun-Hyung;Jang, Seok-Hern;Kim, Kyu-Tae;Lee, Jin-Sung;Yoon, Kyung-Min;Park, Eui-Cheol;Joo, Jin-Ho
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.140-144
    • /
    • 2006
  • We fabricated the YBCO films on single crystal $LaAlO_3$ substrates via a metal organic deposition (MOD) process. In the process, $Y_2Ba_1Cu_1O_x$ and $Ba_3Cu_5O_8$ powders were dissolved in trifluoroacetic acid (TFA) followed by calcining and firing heat treatments. To evaluate the effects of the firing temperature on YBCO phase formation and critical properties, the films were fired at $750^{\circ}C,\;775^{\circ}C\;and\;800^{\circ}C$ after calcining at $430^{\cric}C$. Microstructure observation indicated that a crack-free surface formed and a strong biaxial texture was developed. The FWHM of out-of-plane texture was measured to be in the range of $4.3^{\cric}-7.0^{\circ}$ for all the films. When the YBCO film was fired at $775^{\cric}C$, it had the highest critical properties: 88.5 K of critical temperature and 16 A/cm-width of critical current ($1MA/cm^2$ as critical current density). On the other hand, those properties were degraded as firing at $750^{\circ}C\;and\;800^{\circ}C$. It is considered that the improved critical values are partly owing to dense and homogeneous microstructure, strong texture, and high oxygen content.

  • PDF