• Title/Summary/Keyword: Y-jet nozzle

Search Result 873, Processing Time 0.023 seconds

Performance Study of Supersonic Nozzle with Asymmetric Entrance Shape (유입부 비대칭 노즐의 성능연구)

  • Lee Ji-Hyung;Kim Joug-Keun;Lee Do-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.40-45
    • /
    • 2005
  • Techniques used for throcket motors are mainly classified as fixed nozzles with mechanical exhaust jet interferences on the expansion region (such as jet tabs and jet vanes) and movable nozzles(such as ball&socket md flexible seal). Using the numerical analysis and the cold-flow test, this paper evaluates the performance of supersonic nozzle for asymmetric entrance shape at tilted position of ball&socket nozzle. Numerical results show that the asymmetric effects in the flow fields are gradually diminished up to the nozzle throat and are not noticeable downstream of the nozzle throat. Although the calculated thrust and the lateral force are less than those of cold-flow test, two results show a flirty good agreement.

  • PDF

An Experimental Study on the Characteristics of Rectangular Supersonic Jet on a Flat Plate

  • Kwak, Ji-Young;Lee, Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.324-331
    • /
    • 2016
  • The present study focuses on the characteristics of a supersonic jet flowing from a rectangular nozzle exit on a flat plate. Flow visualization techniques using schlieren and kerosene-lampblack tracing are utilized to investigate shock reflection structures and boundary-layer separations over a flat plate. Wall pressure measurements are also carried out to quantitatively analyze the flow structures. All observations are repeated for multiple jet flow boundary conditions by varying the flap length and nozzle pressure ratio. The experimental results show that the jet flow structures over the flat plate are highly three-dimensional with strong bleeding flows from the plate sides, and that they are sensitive to plate length and nozzle pressure ratio. A multi-component force measurement device is also utilized to observe the characteristics of the jet flow thrust vectoring over the plate. The maximum thrust deflection angle of the jet is about $8^{\circ}$, demonstrating the applicability of thrust vector control via a flat plate installed at the nozzle exit.

Development of Air-jet Washer for the Agaricus Bisporus (공기분사에 의한 양송이 버섯 세척기 개발)

  • Park, H.M.;Cho, K.H.;Hong, S.G.;Lee, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.3
    • /
    • pp.167-174
    • /
    • 2009
  • This study was conducted to develop an agaricus bisporus washing machine which uses compressed air to remove foreign materials attached on the surface of agaricus bisporus. A prototype of the washing machine was constructed, and performance of removing foreign materials was tested. Research results are as follows: 1. Several transferring methods including PE roller rotation, brush roller rotation, PE screw rotation, vibration plate, and belt conveyor were evaluated. Roller, screw, and vibration methods caused damages on the surface of the products, but belt conveyor method caused the least damages. 2. For air jet, a stationary nozzle type and a rotational type were evaluated. The best air jet nozzle was the jet-type nozzle, and the rotational type was more effective than stationary type nozzle. 3. With the conveyer belt, box type moving method and the rotational air jet nozzle, the washing machine showed the best performance when higher than 5.4${\times}$105 Pa of air jet pressure and lower than 0.047 m/s of moving speed was used. Working performance of the system was 650 kg/h, and the damaging rate was 1.2 %.

An Experimental Study on Noise Phenomena in Supersonic Over-expanded Jet (초음속 과팽창 제트에서 발생하는 소음현상에 관한 실험적 연구)

  • Kweon Yong-Hun;Lim Chae-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.337-340
    • /
    • 2006
  • The present paper describes an experimental work to investigate a transonic resonance in supersonic jet that is discharged from a convergent-divergent nozzle. When the nozzle m: at low nozzle pressure ratios, the shock occurs within the divergent section of the nozzle. The transonic resonance of a jet flow is generated by an emission of strong acoustic tones due to the unsteadiness of the shock. A Schlieren optical system is used to visualize the supersonic jet flow In order to specify the flow resonance of a jet, acoustic measurements are performed to obtain noise spectra. The acoustic characteristics of transonic resonace are compared with those of screech tones. The results obtained show that unlike screech frequency, the transonic reso- nace frequency somewhat increases with increasing the nozzle pressure ratio.

  • PDF

An Experimental Study on the Flow Characteristics with the Impinging Angles of Defrost Nozzle Jet Inside a Vehicle Passenger Compartment (차실내 Defrost 노즐 분류의 충돌각 변화에 따른 유동특성에 관한 실험적 연구)

  • Kim, Duck-Jin;Kim, Hyun-Joo;Rho, Byung-Joon;Lee, Jee-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.1024-1032
    • /
    • 2007
  • The flow characteristics with the impinging angles of defrost nozzle jet inside a commercial vehicle passenger compartment were investigated experimentally by using the two-dimensional duct-nozzle model. The shape of the nozzle contraction was designed according to the curved line of cubic equation to the vertical plan of the flow direction. The impinging angles, defined as the angle between nozzle axis and a vertical line to the windshield, were varied from the $0^{\circ}\;to\;80^{\circ}$. The mean velocity distributions, the half-widths, and the momentum distributions with the cases of both the free jet and the impinging jet onto the dummy windshield were measured. The impinging jet flows similarly with wall jet from $X/b_o=20$, and the impinging angle has an effect on the half-width of the impinging jet. The momentum distributions onto the windshield increased with the increase of impinging angle, and then their inflection point was observed around the impinging angle of $60^{\circ}$.

Development of Plate-type Fine Atomizing Nozzles for SI Engines with Intake-port Fuel Injection

  • Suzuki, Takashi;Tani, Yasuhide
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.45-57
    • /
    • 2007
  • This paper presents both experimental and numerical studies regarding nozzles used for the SI engine application, particularly for the intake-port fuel injection type. The atomization mechanism of the multi-hole plate nozzle was investigated experimentally. It was found that the nozzle design added turbulence into the liquid-film jet and the jet disintegrated rapidly. Based on the results, various plate types for the nozzle were developed and tested; six hole nozzle for liquid jet interaction, plate-type nozzle with flat duct channel, and the simpler structured nozzle. The spray characteristics of the prototype nozzles were examined experimentally while the internal flow of the nozzle was investigated computationally. It was shown that turbulent liquid-film was injected and atomization quality was improved by controlling the internal flow condition of the plate-type nozzle.

  • PDF

Effects of an Elliptic Jet Screech Reflector on an Underexpanded Sonic Jet (타원형 제트 스크리치 반사판이 과소팽창 음속 제트에 미치는 영향)

  • Kim, Jung-Hoon;Kim, Jin-Hwa;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.887-894
    • /
    • 2004
  • A technique of mixing enhancement by using an elliptic jet screech reflector has been examined experimentally in an underexpanded sonic round jet where jet screech tone is generated. Since jet screech is known to enhance jet spreading, a reflector was designed to focus jet screech waves near the nozzle lip at an underexpanded jet. The reflector has an elliptic cross section of which one focus is located near the nozzle lip and the other in the jet screech source region in a plane including the jet axis. In the jet with the elliptic reflector, the mass flow rate showed a significant increase in the jet entrainment when compared to that for the small disk reflector. This was attributed to the increased screech amplitude near the nozzle lip as well as the mode change of the jet. The jet mixing was also increased by the amplified jet screech at two other underexpanded jets, but the jet oscillation mode did not change.

An Experimental Study on Flow Characteristics of Impinging Jet (1) (충돌제트의 유동특성에 관한 실험적 연구(1))

  • 배석태;김동균;김시범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.403-408
    • /
    • 2001
  • The flow characteristics of impinging jet flow are affected greatly by nozzle plate to distance. An sharp edge nozzle was used to achieve uniform mean velocity at the nozzle inlet, and its diameter is 10 mm(d). Therefore, the flow characteristics on the impinging jet plate can be changed largely by the control of main flow. In the parent study, we investigate the effects of main flow length, its variable is nozle plate to distances(12d, 10d, 8d, 6d and 4d)

  • PDF

Experimental Study of the Characteristics of 2-Dimensional Coanda Nozzle Jet (2차원 Coanda 노즐 제트 의 특성 에 관한 실험적 연구)

  • 이동호;정명균;김응태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.3
    • /
    • pp.222-231
    • /
    • 1982
  • A single free jet formed by the interaction of two curved wall jets on a Cylinder surface is defined as "the Coanda nozzle jet" in this study. In order to investigate the characteristics of Coanda nozzle jet, an experimental analysis was carried out; measurements of the static pressure distribution on the cylinder surface, the mean velocity profile, the turbulence intensity, and the Reynolds shear stress by using x-type hot-wire probe.ire probe.

A Study on the High-Efficiency Atomisation Molten Materials (PART 2 : A Study on the Mechanism of Liquid Supplying and Film Formation by Applying the Ejector Principle) (Atomize법에 의한 용융소재의 고효율 미세화에 관한 연구(제2보 : 이젝터의 원리를 이용한 액체노즐의 액체공급 및 액막생성 기구와 특성))

  • Oh, J.G.;Cho, I.Y.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.14-23
    • /
    • 1998
  • The negative pressure as much as 10's mmHg is demanded at nozzle inside, in case of atomizing the large density molten materials. by conventional air jet nozzle. In this study, suction type fluid nozzle is designed by applying the ejector principle in order to clarify the air flow of nozzle inside, mechanism of liquid suction and liquid film formation. The results of this experimental study areas follows. Suction force of liquid is magnified by using liquid nozzle, and it is able to supply the liquid stable. Negative pressure at nozzle inside is varied by throttle angle of liquid nozzle, position and outer diameter of air jet nozzle, and have a influence on liquid suction quantity and liquid film formation.

  • PDF