• Title/Summary/Keyword: Y-coupling

Search Result 6,745, Processing Time 0.037 seconds

Force Characteristics Analysis of Halbach Array Magnetized Tubular-Type Magnetic Coupling (Halbach 배열 자화를 갖는 Tubular 타입 커플링의 힘 특성 해석)

  • Kim, Chang-Woo;Kim, Jeong-Man;Choi, Jang-Young
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.762-763
    • /
    • 2015
  • Magnetic coupling is used where required high reliability. because magnetic coupling's durability is stronger than mechanical coupling's durability. This paper shows the force characteristics of halbach array magnetized tubular type magnetic coupling using Analytical method. Analytical method was used, to find force characteristics. Finite element method (FEM) is used to validate force characteristics.

  • PDF

Synthesis of Dimeric Oligodeoxyribonucleotide (이합체성 올리고디옥시리보핵산의 합성)

  • Song, Jeong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1566-1571
    • /
    • 2007
  • Oligodeoxyribonucleotide bearing the di-acetylenic linkage has been prepared. Staring from 5-Iodo-2'-deoxyuridine(1), a four-step sequence, consisting of the Pd(0)-catalyzed Heck-type C-C coupling with acetylenic group, protection of 5'-hydroxy group, generation of acetylenic hydrogen, and Glaser oxidative coupling reaction leads to the dimeric oligodeoxyribonucleotide(5).

  • PDF

Cyclic Behavior of Precast Slender Coupling Beams with Bundled Diagonally Reinforcement and High-Performance Fiber Reinforced Cementitious Composite(HPFRCC) (묶음 대각철근과 고성능 섬유보강 시멘트 복합체를 적용한 세장한 프리캐스트 연결보의 이력거동 평가)

  • Han, Sang Whan;Yu, Kyung Hwan;Kang, Dong Hun;Lee, Ki Hak;Shin, Myung Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • Shear wall systems behave as individual wall because of openings like window and elevator cage. When coupling beams are installed in shear walls, they will have high strength and stiffness so that be less damaged by lateral loads like earthquake. However, coupling beam is difficult construction method. And arranging reinforcement of slender coupling beams are especially hard. It is because the details of coupling beam provided by ACI 318 are complex. In this paper, experiments were conducted using coupling beams with 3.5 aspect ratio to improve the details of slender coupling beams provided by ACI 318. Two specimens were proposed for this study. One specimen applied with bundled diagonally reinforcement only. Another specimen applied both bundled diagonally reinforcement and High-Performance Fiber Reinforced Cementitious Composite (HPFRCC) so that coupling beams have half of transverse reinforcement. All specimen were compared with a coupling beam designed according to ACI 318 and were evaluated with hysteretic behaviors. Test results showed that the performance of two specimen suggested in this study were similar to that of coupling beam designed according to current criteria. And it was considered that simplification of the details of reinforcement would be available if transverse reinforcement was reduced by using bundled diagonally reinforcement and HPFRCC.

Seismic Behavior of Slender Coupling Beams Constructed with High-Performance Fiber Reinforced Cementitious Composite (고성능 섬유 보강 시멘트 복합체(HPFRCC)를 적용한 세장한 연결보의 내진거동 평가)

  • Han, Sang Whan;Kwon, Hyun Wook;Shin, Myung Su;Lee, Ki Hak;Cho, Young Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.271-278
    • /
    • 2013
  • The hysteretic behavior of diagonal reinforced coupling beams is excellent during earthquakes. However, construction of the diagonal reinforced coupling beams is difficult due to complex reinforcement details required by current code procedures (ACI 318-11). Due to the detail requirement, reinforcement congestion and interference among transverse reinforcement always occur during construction field. When the aspect ratio of the beam is large, the interference of reinforcement becomes more serious. The objective of this paper is to simplify the reinforcement details of slender coupling beams by reducing transverse reinforcement around the beam perimeter. For this purpose, high- performance fiber reinforced cementitious composites are used for making coupling beams. Experiments were conducted using three specimens having aspect ratio 3.5. Test results showed that HPFRCC coupling beams with half the transverse reinforcement required by ACI 318-11 provided identical seismic capacities to the corresponding coupling beams having requirement satisfying the requirement specified in ACI 318-11.

Rotordynamic Analysis and Experimental Investigation of the Turbine-Generator System Connected with Magnetic Coupling (마그네틱 커플링으로 연결된 터빈-발전기 시스템의 로터다이나믹 해석 및 실험적 고찰)

  • Kim, Byung Ok;Park, Moo Ryong;Choi, Bum Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.32-38
    • /
    • 2013
  • This paper deals with the study on the rotordynamic and experimental analysis of turbine-generator system connected with a magnetic coupling. Although magnetic coupling has been used to torque transmission of chemical processing pump rotating at under 3,600rpm, magnetic coupling in this study is applied to high-speed turbine-generator system using a working fluid that is refrigerant such as ammonia or R-124a. Results of rotordynamic design analysis are as follows. The first, shaft diameter nearest to outer hub of magnetic coupling has a big effect on the $1^{st}$ critical speed of generator rotor. The second, if the $1^{st}$ critical speeds of turbine rotor and generator rotor have enough to separation margin in comparison to rated speed, the $1^{st}$ critical speed of turbine-magnetic coupling-generator rotor train has enough to separation margin regardless of connection stiffness of magnetic coupling. The analytical FE model is guaranteed by impact test on the prototype and condition monitoring such as measurements of vibration and bearing temperature is also performed.

Estimation of Vibrational Power Transmitted from Vibration Source to Supporting Structure - Estimation and Measurement of Vibrational Power Transmitted in the Horizontal Direction - (진동원으로부터 지지구조물에 전달되는 진동 파워의 추정 - 수평방향으로 전달되는 진동파워의 추정 및 측정 -)

  • 김재철;주진수
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1137-1143
    • /
    • 1998
  • This paper describes the method to measure of the vibrational power transmitted from the vibration source to the supporting structure in the horizontal direction. Generally, it is impossible to measure horizontal forces at the coupling points. However. the vibrational Power transmitted in the horizontal direction can be measured by using indirect method that is based on the mechanical impedance and velocities at the coupling points. We proposed the method to estimate the vibrational power when the vibration source and supporting structure cannot be separated. In this paper. the vibrational power transmitted in the horizontal direction is also estimated by using this method. The estimated and measured results of the mobilities at the coupling point and vibrational power in the horizontal direction are compared. It is shown that the estimated results agree well with the measured results. For the supporting structure with multiple coupling points, the other coupling points should be considered for measuring the vibrational power transmitted through one coupling points. We examine the effects of other coupling points and measure the vibrational power without considering the other coupling points.

  • PDF

A Curvic-Coupling Development for the Turbopump Application (터보펌프용 커빅커플링의 개발)

  • Jeong, Eun-Hwan;Yoon, Suk-Hwan;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.22-25
    • /
    • 2009
  • Development of a curvic-coupling was presented in this paper. The research covers design, structural analysis, hot-temperature-torsion-test, curvic-coupling applied proto-type turbine disk manufacturing, and assembly test of a curvic-coupling rotor system for the turbopump application. Curvic-coupling was designed based on the Gleason-standard-tooth shape. The load capability of the designed curvic coupling was validated by the structural analysis and hot-temperature-torsion-test. A proto-type turbine disk which had adopted designed curvic-coupling was manufactured, assembled and tested to reveal that shaft-disk assembly run-outs in axial and radial directions were much smaller than the design requirements. The development will be finalized after spin test of shaft-disk assembly in near future.

  • PDF

Coupling loss factor evaluation using loss factor based on the SEA (SEA에 기초를 둔 손실계수를 이용한 결합계수의 평가)

  • 안병하;황선웅;김영종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.568-571
    • /
    • 1997
  • The overall aim of this paper is to determine coupling loss factor using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one directional power flow between two sub structures. Using these conditions, it is possible to find the coupling loss factor equation. The comparison between theory of power transmission on conjunction and above equation, show a good agreement in simple beam structure. To check the effectiveness of above equation, it was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure.

  • PDF

Flux Analysis of Air-conditioner Coupling (에어컨디셔너의 냉매배관을 연결하는 커플링의 유동해석)

  • Lee, Su-Yul;Kim, Woo-Seung;Cho, Soo;Sung, Uk-Joo;Park, Hee-Mun;Sim, Kyung-Jong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1031-1036
    • /
    • 2009
  • This study is intended to identify how quick disconnect coupling which connects with refrigerant piping of air-conditioner using R-22 refrigerant has effect on characteristics of flux. in the case where the air-conditioner installs utilizes quick disconnect coupling, COP has an effect on the quantity of cooling load because of changing flow rate and physical properties of refrigerant which flow into an entrance of expansion valve from coupling. Variation of flow rate can be regulated by changing expansion-contraction angle; $\alpha$ of an entrance and an exit of coupling. In this study, quick disconnect coupling is presented flow of coupling by using FLUENT as heat flow program. To have an effect on the expansion entrance valve, and by changing expansion-contraction angle; $\alpha$ of an entrance and an exit

  • PDF

Deformation Characteristics of Steel Coupling Beam-Wall Connection (철골 커플링 보-벽체 접합부의 변형 특성)

  • Park Wan-Shin;Jeon Esther;Han Min-Ki;Kim Sun-Woo;Hwang Sun-Kyung;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.435-438
    • /
    • 2005
  • The use of new hybrid systems that combine the advantages of steel and reinforced concrete structures has gained popularity. One of these new mixed systems consists of steel beams and reinforced concrete shear wall, which represents a cost- and time-effective type of construction. A number of previous studies have focused on examining the seismic response of steel coupling beams in a hybrid wall system. However, the shear transfer of steel coupling beam-wall connections with panel shear failure has not been thoroughly investigated. The objective of this research was to investigate the seismic performance of steel coupling beamwall connections governed by panel shear failure. To evaluate the contribution of each mechanism, depending upon connection details, an experimental study was carried out The test variables included the reinforcement details that confer a ductile behaviour on the steel coupling beam-wall connection, i.e., the face bearing plates and the horizontal ties in the panel region of steel coupling beam-wall connections. It investigates the seismic behaviour of the steel coupling beams-wall connections in terms of the deformation characteristics. The results and discussion presented in this paper provide background for a companion paper that includes a design model for calculating panel shear strength of the steel coupling beam-wall connections.

  • PDF