• Title/Summary/Keyword: Xylose

Search Result 783, Processing Time 0.03 seconds

The Isolation of D-Xylose from Hardwood and it's Fermentation to Ethanol by Yeasts (활엽수로부터 D-xylose의 분리 및 에탄올 생산)

  • Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.3-13
    • /
    • 1991
  • D-xylose 는 임산 바이오마스의 화학석 조성분 증 셀룰로오스와 리그닌 다음으로 가장 많이 존재하는 성분이다. 그럼에도 불구하고 D-glucose만큼의 연구가 진행되지 못해왔다. 단지 xylitol, furfural 및 xylonic acids탐의 몇가지 산으로 전환시켜 이용될 뿐이다. 이런 이유는 D-xylose를 공업적으로 다량 추출하는 방법과, 특히 정선 방법에 어려운 문제점이 있기 때문이다. 그러므로 본 총설에서는 D-xylose를 보다 경제적으로 분리하는 방법과 D-xylose를 에탄올로 발효시키는 과정중의 제 문제점들에 관해 기존에 발표된 논문들을 정리하고저 한다. 즉 공업적으로 D-xylose를 다량 분리시키는 방법으로서 해섬/추출 폭쇄/추출, 초산펄핑, 전기가수분해 방법들이 논의 되었으며, 분리된 D-xylose를 에탄올로 발효시킬 경우 D-xylose의 대사, 발효 조건들의 영향, 헤미셀룰로오스 가수분해물의 발효, 발효의 전망과 문제점등이 포함되었다.

  • PDF

Determination of Optimum Conditions for Xylose Fermentation by Pichia stipitis (Pichia stipitis에 의한 Xylose 발효의 최적조건 결정)

  • 권순효;유연우서진호
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.452-456
    • /
    • 1993
  • This study was carried out to optimize the fermentation conditions for direct alcohol fermentation of xylose by Pichia stipitis CBS 5776. The best cell growth and the ethanol production were obtained under 0.05 VVM aeration and 300rpm agitation at $30^{\circ}C$ using 100 g/l xylose medium of the initial pH 5.0. In the above condition, the maximum specific growth rate and maximum cell concentration were 0.14hr-1 and $1.3 \times109$ cells/ml, respectively. Pichia stipitis CBS 5776 also produced 40.2g/l ethanol utilizing about 96% of 100g/l xylose after 72hr fermentation. At this point, the overall volumetric ethanol productivity was 0.56g/1-hr and the ethanol yield was 0.42 g-ethanol/g-xylose consumed, which corresponds to 82% of the theoretical yield.

  • PDF

The Effects of Xylose Treatment on Rumen Degradability and Nutrient Digestibility of Soybean and Cottonseed Meals

  • Sacakli, P.;Tuncer, S.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.5
    • /
    • pp.655-660
    • /
    • 2006
  • Two trials were conducted to evaluate the effect of xylose treatment on rumen degradability characteristics of DM, OM and CP and in vivo digestibility of DM, OM, CP and crude fiber (CF) of soybean meal (SBM) and cottonseed meal (CSM). In Trial 1, three ruminally cannulated Merino rams were used. Xylose treatments at both levels, 0.5 and 1%, decreased effective degradability of DM, OM and CP of SBM, whereas 0.5 and 1% xylose treatment of CSM did not show any effect on effective degradability of DM, OM and CP. By contrast, maximum potential degradabilities of DM, OM and CP of CSM seemed to be increased by 1% xylose treatment. It was concluded that xylose treatment was effective in protecting SBM proteins from degradation in the rumen, but the same treatment was not so effective for CSM protein. In trial 2, three Merino rams were used. With treatments, DM, OM, CP and CF digestibilities of SBM and CSM were not changed. Crude fiber digestibility was numerically increased by the treatments of 0.5 and 1% xylose of both SBM and CSM compared to untreated SBM and CSM but differences were not significant. In conclusion SBM proteins can be effectively protected from degradation in the rumen by xylose treatment, without negatively affecting in vivo digestibility of protein, whereas xylose treatment appeared to be less effective on protecting of CSM proteins.

Studies on the Microbial Utilization of Agricultural Wastes (Part 11) production of Ethanol and Xylose by Simultaneous Hydrolysis-Fermentation Using Cellulases and Yeast (농산폐자원의 미생물학적 이용에 관한 연구 (제11보) 섬유질자원에서 Ethanol 및 Xylose 의 생산)

  • Kim, Byung-Hong;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.7 no.2
    • /
    • pp.91-95
    • /
    • 1979
  • Ethanol and Xylose were produced from cellulosic agricultural waste such as rice straw and corn cob by a single-step simultaneous hydrolysis-fermentation process utilizing semi-solid culture of Trithoderma as enzyme source and Saccharomyces yeast. By this process all the hexoses prduoced by the enzyme were converted to ethanol leaving pentoses which are not fermented by the yeast. By processing 50 g of rice straw, 18 ml of ethanol and 2.7 g of xylose were produced and 50 g corn cob produced 3.8 ml of ethanol and 10.8 g of xylose. Alkali-treatment of rice straw showed little effects on the productivities of ethanol and xylose. The possible reasons are discussed.

  • PDF

Fermentation of Xylose to Ethanol by Pichia stipitis (Prchia stipitis에 의한 Xylse의 Ethanol 발효)

  • 정인식
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.69-73
    • /
    • 1989
  • Batch fermentation runs were made with initial xylose concentrations of 2%, 4%, 8%, and 10%. The maximum yields were 0.46, 0.45, 0.43, and 0.42g ethanol/g xylose for 2%, 4%, 8%, and 10% xylose respectively. Xylitol formation was insignificant over a wide range of sepcific oxygen supply rates and xylose concentrations. The maximum specific productivities were 0.110, 0.110, 0.241, and 0.0961g ethanol/hr-g DCW for 2% through 10% xylose concentration.

  • PDF

Estimation of Theoretical Yield for Ethanol Production from D-Xylose by Recombinant Saccharomyces cerevisiae Using Metabolic Pathway Synthesis Algorithm

  • Lee, Tae-Hee;Kim, Min-Young;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.384-388
    • /
    • 2001
  • The metabolic pathway synthesis algorithm was applied to estimate the maximum ethanol yield from xylose in a model recombinant Saccharomyces cerevisiae strain containing the genes involved in xylose metabolism. The stoichiometrically independent pathways were identified by constructing a biochemical reaction network for conversion of xylose to ethanol in the recombinant S. cerevisiae. Two independent pathways were obtained in xylose-assimilating recombinant S. cerevisiae as opposed to six independent pathways for conversion of glucose to ethanol. The maximum ethanol yield from xylose was estimated to be 0.46 g/g, which was lower than the known value of 0.51 g/g for glucose-fermenting and wild-type xylose-fermenting yeasts.

  • PDF

Purification of xylose reductase from Candida sp. BT001 and characterization of its properties (Candida sp. BT001의 xylose reductase의 정제 및 성질)

  • Hwang, In-Gyun;Lee, Sang-Hyub;Lee, Wang-Sik;Bang, Won-Gi
    • Applied Biological Chemistry
    • /
    • v.36 no.3
    • /
    • pp.178-183
    • /
    • 1993
  • Xylose reductase (alditol: $NADP^+$ 1-oxidoreductase, EC 1.1.1.21) from the xylose-fermenting yeast, Candida sp. BT001, was purified via salt fractionation, ion-exchange, gel filtration and affinity chromatography, and its properties were characterized. The enzyme from the yeast was active with both NADPH and NADH as coenzyme. The xylose reductase activity with NADH was approximately 51% of that with NADPH and the specific activities of purified enzyme with NADPH and NADH were 11.78 U/mg and 6.01 U/mg, respectively. Molecular weight of the purified enzyme was 31,000 on SDS-PAGE and 61,000 on gel filtration. The Km for D-xylose, NADPH, and NADH was $94.2{\times}10^{-3}M,\;0.011{\times}10^{-3}M\;and \;0.032{\times}10^{-3}M$, respectively. The purified xylose reductase had relatively higher substrate affinity for L-arabinose than other aldoses tested. The optimal pH was 6.2 and the optimal reaction temperature was $45^{\circ}C$. The thermal stability of the enzyme was for 20 minutes at $30^{\circ}C$.

  • PDF

Growth model for Pichia stipitis growing on sugar mixtures (혼합당에서의 Pichia stipitis의 생육 모델)

  • 이유석;권윤중변유량
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.265-270
    • /
    • 1992
  • Low cost fermentation substrates frequently contain a mixture of carbon sources including hexoses, pentoses and disaccharides. Fermentation of such mixtures requires an understanding of how each of these substrates is utilized. During batch culture of Pichia stipitis CBS 5776 on sugar mixtures, glucose causes catabolite repression of xylose and cellobiose utilization. Also, glucose causes a permanent repression of xylose utilization as evidenced by reduced growth rates during the xylose phase of glucose/xylose fermentation. The growth model for multiple substrates is developed based on a cyclic AMP mediated catabolite repression mechanism and this model adequately described the growth and ethanol production from sugar mixtures.

  • PDF

Effects of Xylose Reductase Activity on Xylitol Production in Two-Substrate Fermentation of Recombinant Saccharomyces cerevisiae

  • Lee, Woo-Jong;Kim, Myoung-Dong;Yoo, Myung-Sang;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.725-730
    • /
    • 2003
  • Three recombinant Saccharomyces cerevisiae strains showing different levels of xylose reductase activity were constructed to investigate the effects of xylose reductase activity and glucose feed rate on xylitol production. Conversion of xylose to xylitol is catalyzed by xylose reductase of Pichia stipitis with cofactor NAD(P)H. A two-substrate fermentation strategy has been employed where glucose is used as an energy source for NADPH regeneration and xylose as substrate for xylitol production. All recombinant S. cerevisiae strains Yielded similar specific xylitol productivity, indicating that xylitol production in the recombinant S. cerevisiae was more profoundly affected by the glucose supply and concomitant It generation of cofactor than the xylose reductase activity itself. It was confirmed in a continuous culture that the elevation of the glucose feeding level in the xylose-conversion period enhanced the xylitol productivity in the recombinant S. cerevisiae.

Overproduction of Escherichia coli D-Xylose Isomerase Using ${\lambda}P_L$ Promoter

  • Park, Heui-Dong;Joo, Gil-Jae;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.8-12
    • /
    • 1997
  • In order to overproduce D-xylose isomerase, the Escherichia coli D-xylose isomerase (D-xylose ketol-isomerase, EC 5.3.1.5) gene (xylA) was fused to ${\lambda}P_{L}$ promoter. The promoterless xylA gene containing the ribosome binding site and coding region for D-xylose isomerase was cloned into a site 0.3 kb downstream from the ${\lambda}P_{L}$ promoter on a high copy number plasmid. An octameric XbaI linker containing TAG amber codon was inserted between 33rd codon of ${\lambda}N$ and the promoterless xylA gene. The resulting recombinant plasmid (designated as pPX152) was transformed into E. coli M5248 carrying a single copy of the temperature sensitive ${\lambda}cI857$ gene on its chromosomal DNA. When temperature-induced, the transformants produced 15 times as much D-xylose isomerase as that of D-xylose-induced parent strain. The amount of overproduced D-xylose isomerase was found to be about 60% of total protein in cell-free extracts.

  • PDF