• Title/Summary/Keyword: Xylenes

Search Result 53, Processing Time 0.034 seconds

Multi-coated YBa2Cu3O7-x Films Fabricated by a Fluorine-Free Sol-Gel Process

  • Cho, E.A.;Jang, G.E.;Hyun, O.B.
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.186-191
    • /
    • 2011
  • [ $YBa_2C_3O_{7-x}$ ]films were fabricated on a $SrTiO_3$ (100) substrate using a trimethylaceate propionic acid (TMAP)-based MOD process by controlling the precursor solution viscosity, firing temperature, and by using various coatings. The viscosity of the precursor solution was controlled by the addition of Xylenes. The films were heat treated with different temperatures from 750 to $800^{\circ}C$. c-axis oriented films were obtained. After adding 9 ml of Xylene into the precursor solution, the $T_c$ of the YBCO film, which was coated 2 times and heat treated at $800^{\circ}C$, was 86 K and the measured $J_c$ was above 2.5 MA/$cm^2$ at 77 K in a zero-field.

Decomposition of Hazardous Gaseous Substances by Discharge Plasma (방전 프라즈마 화학반응을 이용한 유해물질의 분해)

  • 우인성;황명환;산외번장
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.79-83
    • /
    • 1996
  • In this study, in attempt to develop a new application technique of discharge plasma, we employed a kind of discharging method called SPCP ( short for Surface discharge induced Plasma Chemical Process). Applications of SPCP have been widely used for years. Compact ozonizers to deodorize household equipments like refrigerators we a part of such applications. We took advantages of the compactness and durability of the SPCP electrode to set up an experimental apparatus for decompositing vapor of aromatic hydrocarbons such as toluene, benzene and xylenes, which are major substances given off In painting or washing processes and aggravate working conditions. Results obtained from this study are summarized as follows. 1) Aromatic hydrocarbon vapors of up to 2,000ppm were almost thoroughly decomposed at the flow rate of 4ℓ/min or lower under the discharge with electric power of 400 Watts. 2) In dry air, as the decomposition progresses, tar-like substance deposits on the discharging areas, which deteriorated the decomposition rate in the end. This substance, however, was almost thoroughly removed by keeping discharge in dry air containing no solvent vapor.

  • PDF

DNA Sequence of the phnN Gene for Benzaldehyde Dehydrogenase from Pseudomonas sp. DJ77 and Its Substrate Preference

  • Kim, Seong-Jae;Hwang, Soon-Young;Kim, Young-Chang
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.224-228
    • /
    • 1999
  • Benzaldehyde dehydrogenase (BZDH), an enzyme involved in the degradation of toluene and xylenes, is encoded by the phnN gene of Pseudomonas sp. strain DJ77. We determined the nucleotide sequence of a DNA fragment of 1,803 base pairs which included the phnN gene. The fragment contained an open reading frame of 1,506 base pairs to accommodate th 55 kDa sized enzyme encoding BZDH. The enzyme efficiently oxidized benzaldehyde, salicylaldehyde, m-tolualdehyde and ps-tolualdehyde.

  • PDF

The Simultaneous Analysis of Benzene, Toluene, Ethylbenzene, o,m,p-Xylenes and Total Petroleum Hydrocarbons in Soil by GC-FID after Ultra-Sonication

  • Sin, Ho Sang;Gwon, O Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.11
    • /
    • pp.1101-1105
    • /
    • 2000
  • A simultaneous determination method of BTEX (benzene, toluene, ethylbenzene, o,m.p-xylene) and TPH (kerosene, diesel, jet fuel and bunker C) in soil with gas chromatography/flame ionization detection (GC-FID) was described. The effects of extracti on method, extraction solvent, solvent volume and extraction time on the extraction performance were studied. A sonication method was simpler and more efficient than Soxhlet or shaking methods. Sonication with 10 mL of acetone/methylene chloride (1 : 1, v/v) for 10 min was found to be optimal extraction conditions for 20 g of soil. Peak shapes and quantification of BTEX and TPH were excellent, with linear calibration curves over a wide range of 1-500 mg/L for BTEX and 10-5000 mg/L for TPH. Good reproducibilities by sonication were obtained, with the RSD values below 10%. By using about 20 g of soil, detection limits were 0.8 mg/L for BTEX and 10 mg/L for TPH. The advantages of this procedure are the use of simple and common equipment, reduced volumes of organic solvents, rapid extraction periods of less than 20 min, and simultaneous analysis of volatile and semivolatile compounds.

Degradation of TPHs, TCE, PCE, and BTEX Compounds for NAPLs Contaminated Marine Sediments Using In-Situ Air Sparging Combined with Vapor Extraction (증기추출법과 결합된 공기주입법을 이용한 비수용성액체 해양퇴적물의 TPHs, TCE, PCE 및 BTEX 정화)

  • Lee, Jun-Ho;Han, Sun-Hyang;Park, Kap-Song
    • Economic and Environmental Geology
    • /
    • v.46 no.5
    • /
    • pp.425-444
    • /
    • 2013
  • This study was carried out in order to determine the remediation of total petroleum hydrocarbons (TPHs), trichloroethylene (TCE), perchloroethylene (PCE), benzene, toluene, ethylbenzene and xylenes (BTEX) compounds for non-aqueous phase liquids (NAPLs) using in-situ air sparging (IAS) / vapor extraction (VE) with the marine sediments of Mandol, Hajeon, Sangam and Busan, South Korea. Surface sediment of Mandol area had sand characteristics (average particle size, 1.789 ${\Phi}$), and sandy silt characteristics (average particle size, 5.503 ${\Phi}$), respectively. Sangam surface sediment had silt characteristics (average particle size, 5.835 ${\Phi}$). Sediment characteristics before experiment in the Busan area showed clay characteristics (average particle size, 8.528 ${\Phi}$). TPHs level in the B1 column of Mandol, Hajeon, Sangam, and Busan sediments were 2,459, 6,712, 4,348, and 14,279 ppm. B2 (3 L/min) to B5 (5 L/min) columns reduced 99.5% to 100.0% of TCE and 93.2% to 100.0% of PCE. Removal rates of TCE, PCE, and BTEX are closely correlated (0.90-0.99) with particle sizes and organic carbon concentrations. However, TPHs (0.76) and benzene (0.71) showed the poorer but moderate correlations with the same parameters.

Solvent-free determination of BTEX in water using repetitive membrane extraction followed by GC-MS (반복적인 막 추출과 GC-MS를 이용한 물 중 BTEX의 분석)

  • Kim, He-Kap;Kim, Se-Young;Lee, Soo-Hyung
    • Analytical Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.352-359
    • /
    • 2011
  • An analytical method for solvent-free determination of benzene, toluene, ethylbenzene, and xylenes (BTEX) in water using repetitive membrane extractions coupled to cryofocusing and GC-MS was derived. BTEX compounds that permeated through a nonporous silicone membrane from the aqueous phase and evaporated into the acceptor phase were purged into a cryofocusing trap ($-100^{\circ}C$) with helium gas. The BTEX compounds, thus enriched in the trap, were thermally desorbed into a capillary column GC and detected using an MS. The flow rate of the donor phase (30 mL water) was set at 10 mL/min, and membrane extractions, accomplished by returning the water drained from the extraction module to the sample container, were repeated three times at $20{\pm}2^{\circ}C$. Although recoveries (%) were variable, from the highest for benzene (approximately 80%) to the lowest for ethylbenzene and xylenes (3.5-10%), the method showed satisfactory precision (RSD 2.2-10%) with good-linearity calibration curves ($r^2$ 0.9976-0.9997 in 1-100 ${\mu}g$/L range) for all of the compounds. The method detection limits (MDLs) ranged from 0.16 to 1.8 ${\mu}g$/L. The results showed the method's advantages such as short analysis time and overall simplicity without solvent compared to the conventional techniques.

Quenching Curves for VOCs in the Analysis of Groundwater $^{14}C$ using Liquid Scintillation Counter (액체섬광계수기를 이용한 지하수의 $^{14}C$ 측정에서 휘발성유기화합물(VOC)에 대한 소광곡선)

  • Lee, Kil-Yong;Cho, Soo-Young;Yoon, Yoon-Yeol;Ko, Kyung-Seok;Kim, Yong-Je
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.53-59
    • /
    • 2007
  • Optimal quenching curves have been studied for the accurate analysis of $^{14}C$ in groundwater polluted by reducing efficiency of volatile organic compounds (VOCs) in liquid scintillation counter (LSC). The quenching parameters (SQP(E)) were measured for ten VOCs such as benzene, toluene, ethylbenzene, o-(m-,p-)xylene, trichloroethylene (TCE), tetrachloroethylene(PCE), carbon tetrachloride and chloroform. The quenching curves were plotted using $^{14}C$ standard solution and chloroform as a quenching agent. Optimal plotting conditions were determined for standard solution, LSC measuring time and the concentration of chloroform. The quenching effects of chlorinated organic compounds such as TCE, PCE, carbon tetrachloride and chloroform were greater than those of BTEX (benzene, toluene, ethylbenzene and xylene). Optimum measuring time was 100 minutes far 7,000 dpm/mL standard solution. A few mL of chloroform should be added for good quenching curves. These quenching curves have good correlation coefficients (> 0.99) and the curves could be applied to accurate analysis of $^{14}C$ in groundwater and tap water.

The Comparison of Volatile Organic Compounds (VOCs) Analysis and Tradescantia Micronucleus (Trad-MCN) Bioassay for Evaluation of Hazardous Materials in Chemical Workplace Field (화학공장 실내 작업장에서의 유해물질 평가를 위한 VOC 분석법과 자주달개비 미세핵 분석법의 비교)

  • Heo, Gwi Suk;Lee, Jae Hwan;Shin, Hae Shik;Kim, Jin Kyu;Lee, Young Yup;Lee, Dai Woon;Lee, Jin Hong
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • This research examined the presence of hazardous materials in chemical workplace field using an integrated chemical/biological monitoring. Chemical workplace field air for volatile organic compounds (VOCs) analysis was collected using a collection tube packed with Tena.x TA adsorbent 400 mg. Workplace field air samples were analyzed by gas chromatography/mass spectrometry (GC/MS). Simultaneously, Tradescantia BNL 4430 clone was exposed in situ to monitor hazardous materials in chemical workplace field. GC/MS analysis showed the presence of various VOCs such as trichloroethylene, toluene, ethylbenzene, (m,p,o)-xylenes, styrene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene. The results showed that in situ monitoring of VOCs with the Tradescantia-micronucleus (Trad-MCN) assay gave positive results in chemical workplace field and negative response at outdoor air. In conclusion, inhalation of these field air by workers may affect chronic demage to their health by inducing micronuclei formation in Tradescantia pollen mother cells. The combination of chemical/biological monitoring is very effective to evaluate hazardous materials in workplace field and can be alternatively used for screening hazardous materials.

A Study on Health Risk Assessment by Exposure to Organic Compounds in University Laboratory (대학 실험실에서의 유기화합물 노출에 의한 건강위험성 평가에 관한 연구)

  • Sim, Sanghyo;Won, Jung-II;Jeon, Hasub;Kim, Dowon
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.22 no.4
    • /
    • pp.49-60
    • /
    • 2021
  • Objectives: Laboratories have various latent physical, chemical, biological, and ergonomical factors according to the diversification and fusion of research and development activities. This study aims to investigate the chemical exposure concentrations of college laboratories and evaluate their health risks, and use them as basic data to promote the health of college students. Methods: The sampling and analysis of harmful chemicals in the air in laboratories were performed using Method 1500 of the U.S. National Institute for Occupational Safety and Health (NIOSH)의 Method 1500. The harmful chemicals in the laboratories were divided into carcinogenic and non-carcinogenic chemicals. Risk assessment was performed using the cancer risk (CR) for carcinogenic chemicals and using the hazard index (HI) for non-carcinogenic chemicals. Results: The harmful chemicals in college laboratories consisted of acetone, diethyl ether, methylene chloride, n-hexane, ethyl acetate, chloroform, tetrahydrofuran, toluene, and xylenes. They showed the highest concentrations in laboratories A (acetone 0.001~2.34ppm), B (chloroform 0.95~6.35ppm), C (diethyl ether 0.08~8.68ppm), and D (acetone 0.07~14.96ppm). The risk assessment result for non-carcinogenic chemicals showed that the HI of methylene chloride was 2.052 for men and 2.333 for women, the HI of N-hexane was 4.442 for men and 5.05 for women. Thus, the HI values were higher than 1. The risk of carcinogenic chemicals is determined by an excess cancer risk (ECR) value of 1.0×10-5, which means that one in 100,000 people has a cancer risk. The ECRs of chloroform exceeded 1.0×10-5 for both men and women, indicating the possibility of cancer risk. Conclusion: College laboratories showed the possibility of non-carcinogenic health risks for methylene chloride, n-hexane, tetrahydrofuran (THF), toluene, and xylenes, and carcinogenic health risks for chloroform, methylene chloride. However, this study used the maximum values of measurements to determine the worst case, and assumed that the subjects were exposed to the corresponding concentrations continuously for 8 hours per day for 300 days per year. In consideration of the nature of laboratory environment in which people are intermittently exposed, rather than continuously, to the chemicals, the results of this study has an element of overestimation.