• Title/Summary/Keyword: Xylem pressure potential

Search Result 5, Processing Time 0.024 seconds

The Effect of Soil Flooding on Photosynthesis and Water Relations of Carpinus cordata and Carpinus laxiflora (까치박달과 서어나무의 광합성과 수분관계에 미치는 토양 침수의 영향)

  • 박용목
    • The Korean Journal of Ecology
    • /
    • v.20 no.3
    • /
    • pp.175-179
    • /
    • 1997
  • To explanin allopatric distribution of Carpinus cordata and C. laxiflora in the field the effect of soil flooding on photosynthesis and water relations was tested with field grown saplings. Under the flooding condition stomatal conductance of C. laxiflora decreased markedly from day two after flooding treatment and remanined low throughout the experiment. In contrast, flooding had no effect on stomatal conductance of C. cordata throughout the exper iment. The rate of photosynthesis of C. laxiflora was significantly suppressed under flooding conditions, whereas that of C. cordata was not affected in the flooded condition. On day seven after flooding treatment xylem pressure potential of C. laxiflora significantly decreased. Flooding, however, did not have any effect on the xylem pressure potential of C. cordata throughout the experiment. From these findings it is concluded that there is a difference in resistance to flooding between C. cordata and C. laxiflora and that one of the the factors responsible for allopatric distribution in the two species is flooding.

  • PDF

Diurnal changes of Tissue Water Relations in Two Allopatric Tree Species (이소적 두 수종의 수분관계 일변화)

  • Park, Yong-Mok
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.453-463
    • /
    • 1996
  • Diurnal changes of microclimatic conditions and tissue water relations were measured at two sites where Carpinus laxiflora and C. cordata were allopatrically distributed. The microclimatic conditions at a site where C. laxiflora was distributed produced severe water stress condition during summer months. Daily maximum temperature reached $30.4^\circC$ and the highest vapor pressure deficit was 1.31 KPa when 13 rainless days were continued. During this period soil water content decreased to below the field capacity even at a depth of 20 cm and xylem pressure potential also decreased to ­2.04 MPa. However, turgor potential was maintained more than 0.4 MPa. Patterns of stomatal conductance were changed with evaporative demand and soil water availability. On the other hand, microclimatic conditions at a site where C. cordata was distributed were moderate water strees condition compared with those at a site C. laxiflora was distributed. Though soil water content was maintained above field capacity C. cordata showed a remarkable decrease in turgor potential and stomatal conductance throughout the experiment. These results indicate that there is a difference in habitat characteristics between the two species and C. laxiflora is more resistant than C. cordata to water stress.

  • PDF

Xylem Sap Flow Affected by Short-term Variation of Soil Moisture Regimes at Higher Growth Period in 'Fuji'/M.9 Apple Trees with Different Fruit Loads (착과량 수준 및 생육성기 토양수분 함량 변화에 따른 '후지'/M.9 품종의 수액이동 특성)

  • Park, Jeong-Gwan;Kim, Seung-Heui;Lee, In-Bok;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.164-169
    • /
    • 2006
  • This study was conducted for 10 days from 17 July to 26 July in 2005 to measure the amount of xylem sap flow under short-term variation of soil moisture regimes at -20 kPa, -50 kPa and -80 kPa in eight-year-old 'Fuji'/M.9 apple trees with different fruit loads. Fruit load was adjusted as three different treatments with standard (100%), 1/2 times (50%) and 2 times (200%) on the basis of optimum fruiting number per tree as the standard fruit load of Fuji cultivar. Trees with standard fruit load during the experimental period showed higher xylem sap flow at -50 kPa of soil moisture regimes than those of trees with 1/2 times and 2 times fruit load. Trees with 1/2 times and 2 times fruit load had similar patterns of the diurnal changes of xylem sap flow, vapor pressure deficit (VPD), and maximum evapotranspiration (ETm). However, trees with 2 times fruit load at -50 kPa and -80 kPa of soil moisture regimes produced lower amount of xylem sap flow than ETm. Trees with standard fruit load produced $1.06{\sim}3.93$ L/tree more amount of xylem sap flow than ETm at all soil moisture regimes. But xylem sap flow of tees with 2 times fruit load had 21% lower at -50 kPa and $31{\sim}36%$ lower at -20 kPa and -80 kPa of soil moisture regimes, respectively than that of trees with standard fruit load. Shoot growth and leaf area were significantly the highest in trees with standard fruit load while those of trees with 2 times fruit load recorded significantly lowest. Leaf water potential of trees with standard fruit load was lower than that of trees with 1/2 times and 2 times fruit load. It indicated that tees with standard fruit load had higher water use for transpiration than other treatments and tees with 2 times fruit load received more stress for the transpiration process under low soil moisture regimes. Consequently, 'Fuji'/M.9 apple trees, the fruit load and soil moisture should be maintained optimum to increase xylem sap flow and transpiration during higher growth period.

Diurnal Change in Water Statue of Fruit Tissues During the Growth of Kiwifruit(Actinidia deliciosa) (참다래 과실의 생장에 따른 과실조직의 일중 수분상태 변화)

  • Han Sang Heon
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • Fruit growth in kiwifruit shows double sigmoid curve, but it does not certainly indicate as years. Therefore, I though the reason to be easy to the effect of water state change in kiwifruit, investigated diurnal change in water status of fruit tissues with an isoipiestic psychrometers against the fruit growth stage of kiwifruit in 1995 and 1996. Diurnal change in the fruit tissue water potential were little, but violent for fruti growth state III in 1996. The potential of two years dropped gradually approach to harvest time. On the other hand, osmotic potential of the tissues indicated to very similar to water potential, dropped rapidly -1.5MPa before dawn, recovered -1 MPa after 3 h on October 14, were -1~-1.7 MPa at the fruit commercial harvest in 1995. It had a tendency to lower in 1996 than in 1995. It was recorded to the minimum air temperature at the first for an autumn in 1995; 13$^{\circ}C$ from the middle night of October 13 to dawn of October 14. Leaves water potential, which is related to water status of xylem, nearly fell below -1 MPa at before dawn from stage II in 1996. However, it fell so low only at commercial in 1995. At the stage II, osmotic potential and ascent of the turgor pressure was high than 1995-fruit. There parameter suggested that three of kiwifruit in 1996 were status of water stress for stage III. The results from this study indicated that difference of fruit growth between 1995-fruit and 1996-fruit was affected by water status of the fruit tissues, which was influenced by weather condition.

  • PDF

Changes in plant hydraulic conductivity in response to water deficit

  • Kim, Yangmin X.;Sung, Jwakyung;Lee, Yejin;Lee, Seulbi;Lee, Deogbae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.35-35
    • /
    • 2017
  • How do plants take up water from soils especially when water is scarce in soils? Plants have a strategy to respond to water deficit to manage water necessary for their survival and growth. Plants regulate water transport inside them. Water flows inside the plant via (i) apoplastic pathway including xylem vessel and cell wall and (ii) cell-to-cell pathway including water channels sitting in cell membrane (aquaporins). Water transport across the root and leaf is explained by a composite transport model including those pathways. Modification of the components in those pathways to change their hydraulic conductivity can regulate water uptake and management. Apoplastic barrier is modified by producing Casparian band and suberin lamellae. These structures contain suberin known to be hydrophobic. Barley roots with more suberin content from the apoplast showed lower root hydraulic conductivity. Root hydraulic conductivity was measured by a root pressure probe. Plant root builds apoplastic barrier to prevent water loss into dry soil. Water transport in plant is also regulated in the cell-to-cell pathway via aquaporin, which has received a great attention after its discovery in early 1990s. Aquaporins in plants are known to open or close to regulate water transport in response to biotic and/or abiotic stresses including water deficit. Aquaporins in a corn leaf were opened by illumination in the beginning, however, closed in response to the following leaf water potential decrease. The evidence was provided by cell hydraulic conductivity measurement using a cell pressure probe. Changing the hydraulic conductivity of plant organ such as root and leaf has an impact not only on the speed of water transport across the plant but also on the water potential inside the plant, which means plant water uptake pattern from soil could be differentiated. This was demonstrated by a computer simulation with 3-D root structure having root hydraulic conductivity information and soil. The model study indicated that the root hydraulic conductivity plays an important role to determine the water uptake from soil with suboptimal water, although soil hydraulic conductivity also interplayed.

  • PDF