• Title/Summary/Keyword: XRD and FT-IR

Search Result 582, Processing Time 0.028 seconds

Synthesis of Co3O4 Nanocubes as an Efficient Electrocatalysts for the Oxygen Evolution Reacitons (물 분해 과정에서 효율적인 촉매 특성을 보이는 Co3O4 nanocubes 합성)

  • Choi, Hyung Wook;Jeong, Dong In;Wu, Shengyuan;Kumar, Mohit;Kang, Bong Kyun;Yang, Woo Seok;Yoon, Dae Ho
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.355-359
    • /
    • 2019
  • The high efficient water splitting system should involve the reduction of high overpotential value, which was enhanced by the electrocatalytic reaction efficiency of catalysts, during the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) reaction, respectively. Among them, transition metal-based compounds (oxides, sulfides, phosphides, and nitrides) are attracting attention as catalyst materials to replace noble metals that are currently commercially available. Herein, we synthesized optimal monodisperse Co3[Co(CN)6]2 PBAs by FESEM, and confirmed crystallinity by XRD and FT-IR, and thermal behavior of PBAs via TG-DTA. Also, we synthesized monodispersed Co3O4 nanocubes by calcination of Co3[Co(CN)6]2 PBAs, confirmed the crystallinity by XRD, and proceeded OER measurement. Finally, the synthesized Co3O4 nanocubes showed a low overpotential of 312 mV at a current density of 10 mA·cm-2 with a low Tafel plot (96.6 mV·dec-1).

A Study on the Properties and Fabrication of Bulk Forming GeSe Based Chalcogenide Glass for Infrared Optical Lens (적외선 광학렌즈 제작을 위한 GeSe의 벌크 제작 및 특성 연구)

  • Bae, Dong-Sik;Yeo, Jong-Bin;Park, Jung-Hoo;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.641-645
    • /
    • 2013
  • Chalcogenide glass has superior property of optical transmittance in the infrared region. Glass made using Ge-Se how many important optical applications. We have determined the composite formular of $Ge_{0.25}Se_{0.75}$ to be the GeSe chalcogenide glass composition appropriate for IR lenses. Also, the optical, thermal and physical characteristics of chalcogenide glass depended on the composition ratio. GeSe bulk sample is produced using the traditional melt-quenching method. The optical, structural, thermal and physical properties of the compound were measured by using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Differential scanning calorimeter (DSC), and Scanning electron microscope (SEM) respectively.

IR Absorption Property in NaNo-thick Nickel Cobalt Composite Silicides (나노급 두께의 Ni50Co50 복합 실리사이드의 적외선 흡수 특성 연구)

  • Song, Oh Sung;Kim, Jong Ryul;Choi, Young Youn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.88-96
    • /
    • 2008
  • Thermal evaporated 10 nm-$Ni_{50}Co_{50}$/(70 nm-poly)Si films were deposited to examine the energy saving properties of silicides formed by rapid thermal annealing at temperature ranging from 500 to $1,100^{\circ}C$ for 40 seconds. Thermal evaporated 10 nm-Ni/(70 nm-poly)Si films were also deposited as a reference using the same method for depositing the 10 nm-$Ni_{50}Co_{50}$/(70 nm-poly)Si films. A four-point probe was used to examine the sheet resistance. Transmission electron microscopy (TEM) and X-ray diffraction XRD were used to determine cross sectional microstructure and phase changes, respectively. UV-VIS-NIR and FT-IR (Fourier transform infrared spectroscopy) were used to examine the near-infrared (NIR) and middle-infrared (MIR) absorbance. TEM analysis confirmed that the uniform nickel-cobalt composite silicide layers approximately 21 to 55 nm in thickness had formed on the single and polycrystalline silicon substrates as well as on the 25 to 100 nm thick nickel silicide layers. In particular, nickel-cobalt composite silicides showed a low sheet resistance, even after rapid annealing at $1,100^{\circ}C$. Nickel-cobalt composite silicide and nickel silicide films on the single silicon substrates showed similar absorbance in the near-IR region, while those on the polycrystalline silicon substrates showed excellent absorbance until the 1,750 nm region. Silicides on polycrystalline substrates showed high absorbance in the middle IR region. Nickel-cobalt composite silicides on the poly-Si substrates annealed at $1,000^{\circ}C$ superior IR absorption on both NIR and MIR region. These results suggest that the newly proposed $Ni_{50}Co_{50}$ composite silicides may be suitable for applications of IR absorption coatings.

Synthesis and Properties of Polyurethane/Clay Nanocomposites Containing Siloxane Segment (실록산 세그먼트를 가진 폴리우레탄/점토 나노복합체의 제조 및 물성에 관한 연구)

  • Lee Jung Eun;Kim Hyung Joong
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.177-182
    • /
    • 2005
  • Montmorillonite (MMT) modified with siloxane diamine was reacted with a reactant obtained from 4,4'-diphenyl methane diisocyanate (MDI) and polyester type polyol, $Nippollan4010(\bar{M}_n2000)$. Finally, polyurethane (PU)/MMT composites were prepared by using 1,4-butane diol as a chain extender in $25\;wt\%$ solution of N,N-dimethyl acetamide (DMAc). It was expected that these nanocomposites had superior exfoliation property to that of MMT dispersed polyurethanes produced by simple mixing due to insertion of siloxane main chain to the silicate interlayer of MMT. Extent of reaction and formation of final products were analysed by using FT-IR spectroscopy. Dispersion into the PU and intercalation of MMT were identified by applying X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile data were acquired by universal test machine (UTM). Thermal stability and variation of surface energy were characterized by thermal gravimetric analysis (TGA) method and measurement of contact angle on the synthesized composites, respectively. As the results the organo-MMT modified with siloxane diamine in the PU composites has an intercalated structure relatively well-expanded rather than a completely exfoliated structure. The tensile strengths and the moduli for the PU/organo-MMT composites were drastically enhanced in comparison to those of $PU/Na^+-MMT$ composites.

Fabrication and Magnetic Properties of BaFe12-2xCoxTixO19 Powders (BaFe12-2xCoxTixO19 분말의 제조 및 자기특성 연구)

  • An, Sung-Yong;Shim, In-Bo;Kim, Chul-Sung;Lee, Seung-Wha
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.1
    • /
    • pp.21-28
    • /
    • 2003
  • M-type hexagonal BaF $e_{12-2x}$ $Co_{x}$ $Ti_{x}$ $O_{19}$ (0$\leq$x$\leq$1.0) ferrite powders prepared by a sol-gel method. The crystallographic and magnetic properties were characterized with a x-ray diffraction (XRD), thermogravimetry (TG), differential thermal analysis (DIA), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and Mossbauer spectroscopy. The result of XRD measurements show that the a and c lattice parameters increase with increasing x from $\alpha$=5.882 and c=23.215 $\AA$ for $\chi$=0.0, to $\alpha$=5.895 and c=23.295 $\AA$ for $\chi$=1.0. From the Mossbauer results, the $Co^{2+}$- $Ti^{4+}$ site occupancies have been affected the changes in the magnetization and in the coercivity. The Curie temperature linearly decreases with increasing $Co^{2+}$- $Ti^{4+}$ concentration x.

Mechanical and Oxygen Permeation Properties of Layered Double Hydroxide/Ethylene Vinyl Acetate Nanocomposite Membranes (Mg-Al Layered Double Hydroxide/Ethylene Vinyl Acetate 나노복합막의 기계적 특성과 기체투과 특성에 관한 연구)

  • Hwang, Ji-Young;Lee, Sang-Hyup;Lee, Jong-Suk;Hong, Se-Ryung;Lee, Hyun-Kyung
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.151-158
    • /
    • 2013
  • The effect of layered double hydroxides (LDH) on the gas separation properties of ethylene vinyl acetate copolymer was investigated. Mg-Al LDH/EVA nanocomposite membranes were prepared from solution intercalation using organically modified LDH (DS-LDH). Dodecyl sulfate (DS)-LDH was obtained by the intercalation of DS anion in the interlayer. The nanocomposite structure has been elucidated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). XRD pattern clearly shows that the DS-LDH layers are disorderly well dispersed in the EVA matrix. The maximum tensile strength and elongation of the LDH/EVA nanocomposite membrane were found with the LDH content 3 wt%. The thermal properties of nanocompostie membrane were enhanced by the incorporation of LDH in EVA matrix. Gas permeation of LDH/EVA nanocomposite membranes with LDH contents of 1, 3, 5 wt% was studied for $O_2$ and $CO_2$ single gases. The presence of 3 wt% LDH decreased $O_2$ permeability by up to 53% compared to the EVA membrane. In spite of barrier property of nanocomposite membrane, however, the gas permeability for $CO_2$ was increased due to its strong affinity with the residual OH groups on the LDH.

Formation of Anatawe type TiO2 from Titanic acid (Titanic acid로부터 Anatase형 $TiO_2$의 형성에 관한 연구)

  • Kim, Hern;Kim, Dae-Woong;Lee, Kyung-Hee;Baik, Woon-Phil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.510-515
    • /
    • 1999
  • Synthesize of anatase type $TiO_2$ from $TiCl_4$ solution was studied. KOH was used on dehydration reaction of $TiCl_4$ solution. Products of dehydration reaction was calcined at 300, 500, 700, 900, $1000^{\circ}C$ during 1hour. Calcined products was studied by XRD, DTA, and FT-IR for effect of calcined temperature. The results are as follow. \circled1 Product pf dehydration reaction at$ 90^{\circ}C$ was semicrystalline anatase type $TiO_2$ because it has a peak vary broad and low at the position of anatase crysral XRD pattern. \circled2 Pure titanium oxide semi-crystalline products were produced at acid pH condition which convert to anatase crystal at $300^{\circ}C$ and to rutile crystal at $700^{\circ}C$. \circled3 The chemical composition of semicrystalline products which was produce at alkali pH conditions, were potasium titante. Potasium-titanate semi-crystalline products crystallized at 630~$640^{\circ}C$ \circled4 The transition temperature of potassium dopped titanium oxide semi-crystalline products was increased with the contents of potasium. \circled5 The optimum synthesise condition of anatase $TiO_2$ products from $TiCl_4$ and KOH are pH 3~5 and $300^{\circ}C$ calcination.

  • PDF

RGB Light Emissions from ZnSe Based Nanocrystals: ZnSe, ZnSe:Cu, and ZnSe:Mn

  • Song, Byungkwan;Heo, Jeongho;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3601-3608
    • /
    • 2014
  • RGB light emitting ZnSe based nanocrystals: ZnSe (blue), ZnSe:Cu (green) and ZnSe:Mn (red) were synthesized by capping the surface of the nanocrystals with oleic acid. The obtained nanocrystal powders were characterized by using XRD, HR-TEM, ICP-AES, FT-IR, and FT-Raman spectroscopies. The optical properties were also measured by UV/Vis and photoluminescence (PL) spectroscopies. The PL spectra showed broad emission peaks at 471 nm (ZnSe), 530 nm (ZnSe:Cu) and 665 nm (ZnSe:Mn), with relative PL efficiencies in the range of 0.7% to 5.1% compared to a reference organic dye standard. The measured average particle sizes from the HR-TEM images for those three nanocrystals were 4.5 nm on average, which were also supported well by the Debye-Scherrer calculations. The elemental compositions of the ZnSe based nanocrystals were determined by ICP-AES analyses. Finally, the drawn CIE diagram showed the color coordinates of (0.15, 0.16) for ZnSe, (0.22, 0.57) for ZnSe:Cu, and (0.62, 0.35) for ZnSe:Mn respectively, which were fairly well matched to that of the RGB color standards.

White Light Emission from a Colloidal Mixture Containing ZnS Based Nanocrystals: ZnS, ZnS:Cu and ZnS:Mn

  • Lee, Jae Woog;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.189-196
    • /
    • 2014
  • Water dispersible ZnS based nanocrystals: ZnS (blue), ZnS:Cu (green) and ZnS:Mn (yellow-orange) were synthesized by capping the surface of the nanocrystals with a mercaptopropionic acid (MPA) molecule. The MPA capped ZnS based nanocrystal powders were characterized by using XRD, HR-TEM, EDXS, FT-IR, and FT-Raman spectroscopy. The optical properties of the colloidal nanocrystals were also measured by UV/Vis and photoluminescence (PL) spectroscopies in aqueous solvents. The PL spectra showed broad emission peaks at 440 nm (ZnS), 510 nm (ZnS:Cu) and 600 nm (ZnS:Mn), with relative PL efficiencies in the range of 4.38% to 7.20% compared to a reference organic dye. The measured average particle sizes from the HR-TEM images were in the range of 4.5 to 5.0 nm. White light emission was obtained by mixing these three nanocrystals at a molar ratio of 20 (ZnS):1 (ZnS:Cu):2 (ZnS:Mn) in water. The measured color coordinate of the white light was (0.31, 0.34) in the CIE chromaticity diagram, and the color temperature was 5527 K.

Suitability evaluation of magnesium substituted biphasic calcium phosphates prepared by coprecipitation method (공침법을 이용한 마그네슘이 첨가된 biphasic calcium phosphate의 적합성 평가)

  • Lee, Hyoung-Sin;Kim, Tae-Wan;Kim, Dong-Hyun;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.237-242
    • /
    • 2010
  • Magnesium-substituted BCP (biphasic calcium phosphate) powders were prepared by incorporating small amounts of magnesium into the structure of different hydroxyapatite (HAp)/${\beta}$-tricalcium phosphate (${\beta}$-TCP) ratios through coprecipitation method. A series of magnesium substitutions ranging from 0, 0.5, and 1.0 wt%, which are comparable to the measured magnesium contents, were performed. The obtained powders were characterized by the following analytical techniques: X-ray diffraction analysis (XRD), Thermo Gravimetric Analyzer (TGA) and Fourier transform infrared spectroscopy (FT-IR). The results have shown that substitution of magnesium in the calcium-deficient apatites resulted in the formation of biphasic mixtures of different HAP/${\beta}$-TCP ratios after heating above $1000^{\circ}C$. The 1.0 wt% magnesiumsubstituted-BCP were soaked in Hank's solutions after 2 weeks to observe the morphology of the biocement, especially needle-like hydroxyapatite crystals and to estimate the length and diameter of nanoneedle crystals.