• Title/Summary/Keyword: XLPE cable failure

Search Result 13, Processing Time 0.021 seconds

Analysis of DC dielectric breakdown strength of Nano-composite insulation material for HVDC Cable (HVDC용 나노복합 절연재료의 DC절연파괴 분석)

  • Cho, Sung-Hoon;Jung, Eui-Hwan;Lee, Han-Ju;Lim, Kee-Joe;Jeong, Su-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.104-104
    • /
    • 2010
  • With the advent of nano-particle fillers in insulating materials, the insulating materials of superior quality have come to fore. In the recent past, nanocomposite LDPE/XLPE (Low Density Polyethylene/Cross Linked Polyethylene) power cable dielectrics have been synthesized. A preliminary evaluation of these new class of materials seem to show that, addition of small amounts of sub-micron inorganic fillers improved the dielectric properties of the composite, in particular, the volume resistivity, and the DC breakdown strength. The thermal behaviour, for example, the stability of composites against decomposition and ensuing electrical failure, do not seem to have been addressed. In a conventional XLPE insulated cable, the average thermal breakdown strength and maximum temperature at the onset of breakdown were seen to be markedly lower than the corresponding intrinsic breakdown strength and decomposition temperature. In this page, analysis of DC Breakdown of nano-composite insulating material for HVDC Cable is introduced.

  • PDF

The Consideration of Electrical Characteristics and Breakdown Lifetime in 22.9[kV] Underground Distribution Power Cables (22.9[kV] 지중배전용 전력케이블의 전기적 특성과 파괴수명 고찰)

  • Kim, Chung-Bae;Hong, Gyeong-Jin;Im, Jang-Seop;Jeong, U-Seong;Kim, Sang-Jun;Kim, Tae-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.628-633
    • /
    • 1999
  • Degradation diagnosis of XLPE insulated URD cables was accomplished through out new method, which was to be analyzed by non-electrical experiments and synthesized by degradation points. To supplement this method, It was also carried out using several electrical analyses. Tan$\delta$ had commonly a different tendency by means oftemperature and frequency and also appeared higher at the outer part rather than innerpart of insulator. PD-q increased generally in proportion to the applied voltage andshowed regular patterns in relation to the thickness of insulator. Breakdown voltageswere measured and breakdown lifetimes were predicted appling for Weibull distribution function. As a result, breakdown lifetime in failure cables was shorter up to$\fraction one-third$ times than that in general cables. It was very available to estimate cable degradation using above method, but it needs further study on XLPE insulated URD cables in order to improve reliability.

  • PDF

Aging Diagnosis of Underground Distribution Power Cables Using Breakdown Lifetime Prediction (파괴수명예측을 통한 지중배전용 전력케이블의 열화 진단)

  • Kim, Chung-Bae;Lee, Jung-Bin;Lim, Chang-Sub;Jang, Young-Hak;Lee, Jin;Kim, Tae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.222-225
    • /
    • 1999
  • Degradation diagnosis of XLPE insulated URD cables was accomplished through out new method. which was to be analyzed non-electrical experiments and synthesized by degradation points. To supplement this method, it was also carried out using several electrical analyses. Breakdown voltages were measured and breakdown lifetimes were Predicted appling for Weibull distribution function. As a result, breakdown lifetime in failure cables was shorted up to 1/3 times than that in general cables. It was very available to estimate cable degradation using above method, but it needs further study on XLPE insulated URD cables in order to improve reliability.

  • PDF