• Title/Summary/Keyword: XLM-R

Search Result 4, Processing Time 0.025 seconds

Sentiment analysis of Korean movie reviews using XLM-R

  • Shin, Noo Ri;Kim, TaeHyeon;Yun, Dai Yeol;Moon, Seok-Jae;Hwang, Chi-gon
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.86-90
    • /
    • 2021
  • Sentiment refers to a person's thoughts, opinions, and feelings toward an object. Sentiment analysis is a process of collecting opinions on a specific target and classifying them according to their emotions, and applies to opinion mining that analyzes product reviews and reviews on the web. Companies and users can grasp the opinions of public opinion and come up with a way to do so. Recently, natural language processing models using the Transformer structure have appeared, and Google's BERT is a representative example. Afterwards, various models came out by remodeling the BERT. Among them, the Facebook AI team unveiled the XLM-R (XLM-RoBERTa), an upgraded XLM model. XLM-R solved the data limitation and the curse of multilinguality by training XLM with 2TB or more refined CC (CommonCrawl), not Wikipedia data. This model showed that the multilingual model has similar performance to the single language model when it is trained by adjusting the size of the model and the data required for training. Therefore, in this paper, we study the improvement of Korean sentiment analysis performed using a pre-trained XLM-R model that solved curse of multilinguality and improved performance.

Word-level Korean-English Quality Estimation (단어 수준 한국어-영어 기계번역 품질 예측)

  • Eo, Sugyeong;Park, Chanjun;Seo, Jaehyung;Moon, Hyeonseok;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.9-15
    • /
    • 2021
  • 기계번역 품질 예측 (Quality Estimation, QE)은 정답 문장에 대한 참조없이 소스 문장과 기계번역 결과를 통해 기계번역 결과에 대한 품질을 수준별 주석으로 나타내주는 태스크이며, 다양한 활용도가 있다는 점에서 꾸준히 연구가 수행되고 있다. 그러나 QE 모델 학습을 위한 데이터 구성 시 기계번역 결과에 대해 번역 전문가가 교정한 문장이 필요한데, 이를 제작하는 과정에서 상당한 인건비와 시간 비용이 발생하는 한계가 있다. 본 논문에서는 번역 전문가 없이 병렬 또는 단일 말뭉치와 기계번역기만을 활용하여 자동화된 방식으로 한국어-영어 합성 QE 데이터를 구축하며, 최초로 단어 수준의 한국어-영어 기계번역 결과 품질 예측 모델을 제작하였다. QE 모델 제작 시에는 Cross-lingual language model (XLM), XLM-RoBERTa (XLM-R), multilingual BART (mBART)와 같은 다언어모델들을 활용하여 비교 실험을 수행했다. 또한 기계번역 결과에 대한 품질 예측의 객관성을 검증하고자 구글, 아마존, 마이크로소프트, 시스트란의 번역기를 활용하여 모델 평가를 진행했다. 실험 결과 XLM-R을 활용하여 미세조정학습한 QE 모델이 가장 좋은 성능을 보였으며, 품질 예측의 객관성을 확보함으로써 QE의 다양한 장점들을 한국어-영어 기계번역에서도 활용할 수 있도록 했다.

  • PDF

Zero-shot Text Classification based on Reinforced Learning (강화학습 기반의 제로샷 텍스트 분류)

  • Zhang Songming;Inwhee Joe
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.439-441
    • /
    • 2023
  • 전통적인 텍스트 분류 방법은 상당량의 라벨링된 데이터와 미리 정의된 클래스가 필요해서 그 적용성과 확장성이 제한된다. 그래서 이런 한계를 극복하기 위해 제로샷 러닝(Zero-shot Learning)이 등장했다. 텍스트 분류 분야에서 제로샷 텍스트 분류는 모델이 대상 클래스의 샘플을 미리 접하지 않고도 인스턴스를 분류할 수 있도록 하는 중요한 주제이다. 이 문제를 해결하기 위해 정책 네트워크를 활용한 심층 강화 학습(DRL) 기반 접근법을 제안한다. 이러한 방법을 통해 모델이 새로운 의미 공간에 효과적으로 적응하면서, 다른 모델들과 비교하여 제로샷 텍스트 분류의 정확도를 향상시킬 수 있었다. XLM-R 과 비교하면 최대 15.9%의 정확도 향상이 나타났다.

Comparative study of text representation and learning for Persian named entity recognition

  • Pour, Mohammad Mahdi Abdollah;Momtazi, Saeedeh
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.794-804
    • /
    • 2022
  • Transformer models have had a great impact on natural language processing (NLP) in recent years by realizing outstanding and efficient contextualized language models. Recent studies have used transformer-based language models for various NLP tasks, including Persian named entity recognition (NER). However, in complex tasks, for example, NER, it is difficult to determine which contextualized embedding will produce the best representation for the tasks. Considering the lack of comparative studies to investigate the use of different contextualized pretrained models with sequence modeling classifiers, we conducted a comparative study about using different classifiers and embedding models. In this paper, we use different transformer-based language models tuned with different classifiers, and we evaluate these models on the Persian NER task. We perform a comparative analysis to assess the impact of text representation and text classification methods on Persian NER performance. We train and evaluate the models on three different Persian NER datasets, that is, MoNa, Peyma, and Arman. Experimental results demonstrate that XLM-R with a linear layer and conditional random field (CRF) layer exhibited the best performance. This model achieved phrase-based F-measures of 70.04, 86.37, and 79.25 and word-based F scores of 78, 84.02, and 89.73 on the MoNa, Peyma, and Arman datasets, respectively. These results represent state-of-the-art performance on the Persian NER task.