• Title/Summary/Keyword: XAD

Search Result 185, Processing Time 0.021 seconds

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo Phenol Derivatives(I) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(I))

  • Lim, Jae-Hee;Kim, Min-Kyun;Lee, Chang-Hun;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.279-291
    • /
    • 1996
  • The new chelating resins, XAD-2, 4, 16-TAC and XAD-2, 4, 16-TAO were synthesized by Amberlite XAD-2, XAD-4, and XAD-16 macroreticular resins with 2-(2-thiazolylazo)-p-cresol(TAC) and 4-(2-thiazolylazo)orcinol(TAO) as functional groups and were characterized by elemental analysis and FT-IR spectrometry. It was found that the content of functional group in chelating resin was 0.60mmol/g in XAD-16-TAC and 0.68mmol/g in XAD-16-TAO respectively. The chelating resins were stable in acidic and alkaline solution and can be reused over 10 times. The sorption behavior of some metalions to two chelating resins was investigated by batch method, which included batch equilibrium, effect of pH, coexisting ions and masking agent. For the optimum condition of sorption, the time required for equilibrium was about 1 hour and optimum pH was 5. In the presence of anions such as ${SO_4}^{2-}$ and $CH_3COO^-$, the sorption of U(VI) ion was slightly reduced but other anions such as $Cl^-$ and $NO{_3}^-$ revealed no interference effect. Also, sorption capacity of U(VI) ion was decreased by addition of $CO{_3}^{2-}$ ion because of complex formation of $[UO_2(CO_3)_3]^{4-}$, but alkali metals and alkali earth metals including Na(I), K(I), Mg(II), and Ca(II) were not affected for the sorption extent. Masking agent, NTA showed better separation efficiency of U(VI) ion from coexisting metal ions such as Th(IV), Zr(IV), Hf(IV), Cu(II), Cd(II), Pb(II), Ni(II), Zn(II) and Mn(II) than EDTA, CDTA.

  • PDF

A Study on the Sorption Behavior of U(VI) ion by Arsenazo I-XAD-2 Chelating Resin (Arsenazo I-XAD-2 킬레이트수지를 이용한 U(VI) 이온의 분리 및 농축에 관한 연구)

  • Lee, Chang-Hun;Lee, Si-Eun;Lim, Jae-Hee;Eom, Tae-Yoon;Kim, In-Whan;Kang, Chang-Hee;Lee, Won
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.489-499
    • /
    • 1993
  • Some sorption behaviors of U(VI) ion on Arsenazo I-XAD-2 chelating resin were investigated. This chelating resin was synthesized by the diazonium coupling of Amberlite XAD-2 resin with Arsenzo I chelating reagent and characterized by elementary analysis method and IR spectrometry. The optimum conditions for the sorption of U(VI) ion were examined with respect to pH, U(VI) ion concentration and shaking time. Total sorption capacity of this chelating resin on U(VI) ion was 0.39mmol U(VI)/g resin in the pH range of 4.0~4.5. This chelating resin was showed increased sorption capacity on the increased pH value. It was confirmed that sorption mechanism of U(VI) ion on the Arsenazo I-XAD-2 chelating resin was competition reacting between U(VI) ion and $H^+$ ion. Breakthrough volume and overall capacity of U(VI) ion measured by column were was 600 ml and 0.38 mmol U(VI)/g resin, respectively. The desorption of U(VI) ion was showed recovery of 90~96% using 3M $HNO_3$ and 3M $Na_2CO_3$ as a desorption solution. The separation and concentration of U(VI) ion from natural water and sea water was performed successfully by Arsenazo I-XAD-2 chelating resin.

  • PDF

Determination of Cadmium(II) and Copper(II) by Flame Atomic Absorption Spectrometry after Preconcentration on Column with Pulverized Amberlite XAD-4 with Bismuthiol I

  • Park, Dong-Seok;Choi, Hee-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1375-1382
    • /
    • 2007
  • A column preconcentration method with pulverized Amberlite XAD-4 loaded with bismuthiol I (BI) has been developed for the determination of trace Cd(II) and Cu(II) in various real samples by flame atomic absorption spectrophotometry. Various experimental conditions, such as the size of XAD-4, adsorption flow rate, amount of bismuthiol I, stirring time for adsorbing bismuthiol I on XAD-4, pH of sample solution, amount of XAD-4- BI, desorption solvent, and desorption flow rate, were optimized. Also, the adsorption capacity and the adsorption rate of Cd(II) and Cu(II) on XAD-4-BI were investigated. The interfering effects of various concomitant ions were investigated, Bi(III), Sn(II) and Fe(III) were found to affect the determination. But the interference by these ions was completely eliminated by adjusting the amount of XAD-4-BI resin to 0.70 g, although the adsorption flow rate was slower. For Cd(II) our proposed technique obtained a dynamic range of 0.5-40 ng mL-1, a correlation coefficient (R2) of 0.9913, and a detection limit of 0.3 ng mL-1. For Cu(II), the corresponding values were 2.0-120 ng mL-1, 0.9921 and 1.02 ng mL-1. To validate this proposed technique, the aqueous samples (stream water, reservoir water, tap water and wastewater), the diluted brass sample and the plastic sample, as real samples, were used. Recovery yields of 91-103% were obtained. These measured data were not different from ICP-MS data at 95% confidence level. Our proposed method was also validated using rice flour CRM (normal, fortified) samples. From the results of our experiment, we found that the technique we present here can be applied to the determination of Cd(II) and Cu(II) in various real samples.

A Study on the Development of Analytical Method for Micro-odorous Compounds in Water (흡착제를 이용한 수중의 미량 이취물질 분석법 개발에 관한 연구)

  • Kim, Eun-Ho;Son, Hee-Jong;Kim, Yeong-Ung;Kim, Hyeong-Seok;Sung, Nak-Chang
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.103-107
    • /
    • 1999
  • Even if odorous compounds remain very low concentration in water, it cause strong odor. Because Geosmin and most of odorous compound had very low vaporization, those were difficult to analyze with GC/MSD and Purge & Trap. So, we needed pre-treatment method for decreasing amounts of extracting solvents, improving recovery efficiencies and increasing analytical efficiencies. This study developed efficient technology for analyzing odorous compounds, using various adsorbents and extracting solvents. The optimum adsorbent was XAD resins. Especially, XAD-2, XAD-7 and XAD-2010 were superior, but XAD-2 of these and the optimum extraction solvent is MTBE. Other extraction solvents' efficiency is in order of MTBE>Dichloromethane>n-Hexane>Diethylether. The optimum NaCl dosage for increasing efficiency is 5 g in liquid-liquid extraction method. The shaking time(0~24hr) has no concern with adsorption efficiency. The optimum adsorbent is XAD-2 resin and extraction solvent is MTBE. Dosing NaCl, adsorption efficiency is increased in liquid-liquid extraction method, but NaCl has no effect on liquid-solid extraction method. In this experimental results, this algae toxins(Mycrocystin, Anatoxin etc.).

  • PDF

A Study on the Development of Analytical Method for Micro-Odorous Compounds in Water (흡착제를 이용한 수중의 미량 이취물질 분석법 개발에 관한 연구)

  • 김은호;성낙창;최용락
    • Journal of Life Science
    • /
    • v.9 no.5
    • /
    • pp.575-580
    • /
    • 1999
  • Even if odorous compounds remained very low concentration in water, it caused strong odor. Because Geosmin and most of odorous compound had very vaporization, those were difficult to analyze with GC/MSD and Purge & Trap. So, we needed pre-treatment method for decreasing amounts of extracting solvents, improving recovery efficiencies and increasing analytical efficiencies. This study developed efficient technology for analyzing odorous compounds, using various adsorbents and extracting solvents. The optimum adsorbent was XAD resins. Especially, XAD-2, XAD-7 and XAD-2010 were superior, but XAD-2 of these and MTBE was the optimum extraction solvent. Other extraction solvent's efficiency was in order of MTBE>Dichloromethane>n-Hexane>Diethylether. The optimum NaCl dosage for increasing efficiency was 5g in liquid-liquid extraction method. The shaking time(0∼24hr) had no concern with adsorption efficiency. The optimum adsorbent was XAD-2 resin and extraction solvent was MTBE. Dosing NaCl, adsorption efficiency was increased in liquid-liquid extraction method, but NaCl has no effect on liquid-solid extraction method. In this experimental results, this method will apply to not only Geosmin but other well-known odorous compounds (2-MIB, IBMP, IPMP, TCA) and algae toxins (Mycrocystin, Anatoxin etc)

  • PDF

Ion-Pair Chromatography of Benzoic Acid and Its Derivatives on XAD-2 (XAD-2 지지체를 이용한 벤조산과 그 유도체들의 이온쌍 크로마토그래피에 관한 연구)

  • Kang, Sam-Woo;Ryu, Sam-Gon;Park, Young-Kyu
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.176-184
    • /
    • 1984
  • Retention behavior of benzoic acid and its derivatives on XAD-2 in the alcoholic aqueous solution was investigated and separation was attempted. Retention was affected by the concentration and kinds of added organic solvents, the pH of the aqueous solution, the added $R_4N^+$ and the position and kinds of functional group in the sample molecules. Retention of sample acids in acidic conditions was due to mainly molecular adsorption on nonpolar XAD-2 surface and that in basic conditions was due to mainly ion-pair model. In these bases a mixed sample was separated in EtOH 20% aqueous solution at pH 8.50.

  • PDF

Enhancement of Ethanol Production by The Removal of Fermentation Inhibitors, and Effect of Lignin-derived Inhibitors on Fermentation (에탄올 생산 향상을 위한 발효저해물질 제거와 리그닌 유래 발효저해물질이 에탄올 발효에 미치는 영향)

  • Um, Min;Shin, Gyeong-Jin;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.389-397
    • /
    • 2016
  • In this study, ethanol was produced from a biomass hydrolysate that had been treated by electrodialysis (ED) and Amberlite XAD resin to remove fermentation inhibitors. Most of the acetic acid (95.6%) was removed during the ED process. Non-ionizable compounds such as total phenolic compounds, 5-hydroxymethyl furfural, and furfural were effectively removed by the XAD resin treatment. Ethanol production was improved when the ED-treated hydrolysate was treated with XAD-4 resin for a short reaction time. The highest ethanol production from ED-treated hydrolysate was $6.16g/{\ell}$ (after 72 h of fermentation) when the treatment with XAD-4 resin was for 5 min. Among the lignin-derived fermentation inhibitors tested, syringaldehyde in low concentrations (1 and 2 mM) in the hydrolysate increased ethanol production, whereas a high concentration (5 mM) inhibited the ethanol production process. A synthetic medium containing syringaldehyde and ferulic acid was prepared to investigate the synergistic effect of inhibitors on ethanol fermentation. Ethanol production decreased in the mixture of 1 mM syringaldehyde and 1 mM ferulic acid, implying that the effect of ferulic acid on ethanol fermentation is comparable to that of syringaldehyde.

A Study of the Adsorption Behavior of Organic Acids by Polymeric Adsorbents (고분자 흡착제에 대한 유기산의 흡착성에 관한 연구)

  • Dai Woon Lee;In Ho Lee;Dal Ho Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.483-494
    • /
    • 1988
  • The adsorption behavior of aromatic acids on Amberlite XAD-4 resin was investigated by measuring the distribution coefficient by batch method. The adsorption of solutes on XAD-4 was affected by the several factors such as, analyte concentration, the pH of solution and concentration of pairing ion. The enhanced adsorption of solutes on XAD-4 in the presence of tetraalkylammonium salt as an ion pairing reagent, referred to as ion interaction, was suggested to follow a double layer model where the pairing ion occupies a primary layer at the adsorbent while the solute anion and other anions in the system comlpete for the secondary layer. Therefore, the ability of an ion pairing reagent to enhance solute adsorption depended significantly on the type and concentration of counter-ion and co-anion accompanying the ion pairing reagent or salt used for ionic strength control. In addition, a good linear relationship between the logarithm of capacity factors measured by batch and elution method as a function of the concentration of ion pairing reagent and methanol can be used to predict the retention in elution method on the basis of capacity factors measured by batch method.

  • PDF

A Study on Characteristics of Natural Organic Matter using XAD and FTIR in Yeongsan River System (XAD 및 FT-IR을 이용한 영산강수계 광주시 유역 자연유기물질의 분포특성 연구)

  • Lee, Dong-Jin;Chon, Kang-Min;Kim, Sang-Don;Jung, Soo-Jung;Lee, Kyung-Hee;Hwang, Tae-Hee;Lim, Byung-Jin;Cho, Jae-Weon
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.358-363
    • /
    • 2011
  • This study investigated the characteristics of natural organic matter(NOM) with tXAD resin and FT-IR in the Yeongsan river system of Gwangju region. NOM fractionation by XAD 8/4 resins was used to classify hydrophobic and hydrophilic substances. FTIR was applied to classify functional groups in the structure of NOM. In the XAD investigation, most of the four site-samples were mainly hydrophilic substances. In March, hydrophobic substances were dominant in the Gwangju 1 site (GJ-1), while hydrophilic substances were dominant for the other sites. In May, samples of all four sites were hydrophilic with a vigorous activity of microorganism due to increasing temperatures. The October results were very similar with those from March. In the FT-IR investigation, most of the broad and large peaks were assigned to the aliphatic group, particularly the OH group, C-H, $C-H_2$, $C-H_3$, and C-O alcohol group. All were related to hydrophilic substances. Other peaks showed the aromatic group, particularly the C=O (Ketone) Group. As a result, there is an identification of NOM in the Yeongsan river system composing mainly of hydrophilic substances and functional groups (OH, C-H etc.) of the aliphatic compound.

Selective Adsorption of Flavonoids Compounds from the Leaf of Ginkgo biloba L. (은행(Ginkgo biloba L)의 잎으로부터의 Flavonoids 화합물의 선택적 흡착)

  • 윤성용;최원재박종문
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.726-732
    • /
    • 1996
  • Selective adsorption of plant metabolites from a polar dilute solution onto a polycarboxyl ester sorbent (XAD-7) was investigated. Experimental results demonstrated that neutral resins could selectively concentrate specific flavonoids from dilute aqueous mixtures. Adsorption was dependent on the pH of medium, dosage of the resins and medium composition. Especially the medium composition was a key factor for the selective adsorption and it was found that the selective adsorption was dependent on specific sorbent-sorbate-medium characteristics. Under the optimum condition, selectivity increased up to 85% and the yield of recovery was approached to 98%. It was also found that XAD-7 adsorbed flavonoids in the order of hydrophobicity.

  • PDF