• Title/Summary/Keyword: XAD

Search Result 185, Processing Time 0.023 seconds

Studies on the Chelating Agent-Impregnated Resins for the Adsorption and Separation of Metal Ions (II). 5,7-Dihalo-8-Hydroxyquimoline(DXHQ)-Impregnated Resins (금속이온 흡착 및 분리를 위한 킬레이트 시약-침윤수지에 관한 연구 (제2보). 5,7-Dihalo-8-Hydroxyquinoline (DXHQ)-침윤수지)

  • Dai Woon Lee;Chul Hun Eum;Yong Soon Chung;Kyu Chang Park
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.403-411
    • /
    • 1984
  • Amberlite XAD-7 and XAD-4 resins impregnated with DXHQ (5,7-dihalo-8-hydroxyquinoline) were prepared for the adsorption, separation and recovery of heavy metal ions from aqueous solutions. The characteristics of the impregnated resins, DXHQ (X : Cl, Br, I)-XAD were studied to find out the proper pairs of resin and DXHQ for the adsorption of metal ions. The increasing order of the impregnated amount of DXHQ onto XAD-7 resin was as follows: DCHQ < DBHQ < DIHQ. It was observed from the plot of log $K_d$ vs. pH that the optimum pH range for the adsorption of DIHQ onto XAD-4 resin was from 3.0 to 7.0. The stabilities of the DXHQ-XAD resins were investigated by measuring the amount of DXHQ remained on the XAD resin after shaking the DXHQ-XAD resins in various solutions of pH ranging from 2 to 12 and hydrochloric acid solutions. The impregnated resins were considerably stable in both acidic and neutral solutions. The amount of DIHQ leached from DIHQ-XAD-4 resin by eluting with various HCl solutions (1 ∼ 5M) was negligible, but in the case of XAD-7 resin it increases as the concentration of HCl solution increases. The optimum pH ranges, absorption mole ratio (M : DXHQ) and adsorption capacities (mmol metal per gram of resin) for the adsorption of metal ions onto the DXHQ-XAD resins were determined respectively. The stability of metal ion absorbed by the DXHQ-XAD resins was observed as the following order: M-DCHQ-XAD-7 < M-DBHQ-XAD-7 < M-DIHQ-XAD-7. The adsorbed metal ions were quantitatively recovered by eluting with HCl (0.5 ∼ 5M) and DXHQ-XAD resins could be reused over 5 times without re-impregnation of DXHQ.

  • PDF

Studies on the Chelating Agent-Impregnated Resins for the Adsorption and Separation of Metal Ions (Ⅰ). 8-Hydroxyquinoline-Impregnated Resins (금속이온 흡착 및 분리를 위한 킬레이트 시약-침윤수지에 관한 연구 (제1보). 8-Hydroxyquinoline-침윤수지)

  • Dai Woon Lee;Tack Hyuck Lee;Kwang Ha Park
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.353-360
    • /
    • 1983
  • The adsorption behavior of 8-hydroxyquinoline (8HQ) on Amberlite XAD-4 and-7 resins was investigated by measuring its distribution coefficients under various experimental conditions, such as shaking time, pH and concentration of methanol in the medium. The application of 8HQ-impregnated-XAD resins for the absorption and separation of metal ions was studied. The maximum adsorption of 8HQ on XAD resins was observed in the 30% methanol solution having pH range from 6.0 to 9.0. The impregnation capacities of XAD resins for 8HQ were 3.81${\times}$10-2mmol, 8HQ/g, XAD-4 resins and 2.60${\times}$10-2mmol, 8HQ/g, XAD-7 resin, respectively. The 8HQ-impregnated-XAD resins were stable in pH range from 6.0 to 10.0 and the amount of 8HQ leached from XAD-4 resin by eluting with hydrochloric acid(above 5M) was negligible. The optimum pH range for the adsorption of metal ions on 8HQ-impregnated XAD resin was also 6.0 to 10.0, and the adsorption mole ratio of metal ion to 8HQ were 1 : 2 for Cu(II), Cd(II) and Ni(II), and 1 : 3 for Fe(III) at the above pH range. It was found that the absorbed metal ions on 8HQ-impregnated-XAD resins were recovered quantitatively with 5M HCl and 8HQ-impregnated-XAD-4 resin could be reusable over 5 times without decrease in its impregnation capacity.

  • PDF

New Analytical Methods for Separation and Identification of Heavy Metals (II). A Study on the Adsorption and Recovery of Cu(Ⅱ) ion by Amberlite XAD-7 Resins Impregnated with Chelating Agents (중금속의 분리 및 검출을 위한 분석화학적 연구 (제 2 보) 킬레이트제-Amberlite XAD-7 침윤수지에 의한 Cu(II) 이온의 흡착 및 회수에 관한 연구)

  • Dae Woon Lee;Chul Hun Eum;Tae Sung Kim;Doo-Soon Shin;Koo Soon Chung
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.308-314
    • /
    • 1987
  • The adsorption behavior of some chelating agents on the Amberlite XAD-7 resin was studied to obtain the optimum conditions for the preparation of chelating agent-XAD-7 resins. The chosen chelating agents are cupferron (CP), diphenylcarbazone (DPC), salicylaldoxime (SAO), thiosalicylic acid (TSA), and dimethylglyoxime (DMG), which have been well known chelating agents to Cu(Ⅱ) and Ni (Ⅱ) ions. Among the chelating agent-XAD-7 resins, SAO-XAD-7 and DMG-XAD-7 resins were evaluated as appropriate impregnated resins by investigating their stabilities in the wide pH range and high abilities to adsorb Cu(Ⅱ) and Ni(Ⅱ) ions. The selective adsorption of Cu(Ⅱ) from Ni(Ⅱ) was possible by changing pH condition by SAO-XAD-7 resin. The adsorption capacities of SAO-XAD-7 and DMG-XAD-7 for Cu(Ⅱ) were $7{\times}10^{-3}mmol$ Cu(Ⅱ) per gram of resin and $2{\times}10^{-3}mmol$ Cu(Ⅱ) per gram of resin, respectively. The quantitative recovery of Cu(Ⅱ) adsorbed by the resin was demonstrated. The adsorption behavior of Cu(Ⅱ) and Ni(Ⅱ) by the single and mixed bed of chelating agent-XAD-7 resin was discussed.

  • PDF

A comparative study for adsorption of carbolic acid by synthetic resins

  • Uslu, Hasan;Bamufleh, Hisham S.
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.439-449
    • /
    • 2015
  • Carbolic Acid which is called phenol is one of the important starting and/or intermediate materials in various industrial processes. However, its excessive release into environment poses a threat to living organisms, as it is a highly carcinogens and hazardous pollutant even at the very low concentration. Thus removal of phenol from polluted environments is very crucial for sustainable remediation process. We developed a low cost adsorption method for separating phenol from a model aqueous solution. The phenol adsorption was studied using two adsorbents i.e., Amber lite XAD-16 and Amber lite XAD-7 HP with a constant amount of resin 0.1 g at varying aqueous phenol concentrations ($50-200mgL^{-1}$) at room temperature. We compared the efficacy of two phenol adsorbents for removing higher phenol concentrations from the media. We investigated equilibrium and kinetics studies of phenol adsorption employing Freundlich, Temkin and Langmuir isotherms. Amberlite XAD-16 performed better than Amberlite XAD-7 HP in terms of phenol removal efficiency that amounted to 95.52%. Pseudo second order model was highly fitted for both of the adsorption systems. The coefficient of determination ($R^2$) with Langmuir isotherm was found to be 0.98 for Amberlite XAD-7 HP. However, Freundlich isotherm showed $R^2$ value of 0.95 for Amberlite XAD-16, indicating that both isotherms could be described for the isotherms on XAD-7 HP and Amberlite XAD-16, respectively.

Separation of Th(IV) and U(VI) Using Arsenazo I-XAD-16 Chelating Resin (Arsenazo I-XAD-16 킬레이트 수지를 이용한 Th(IV)과 U(VI)의 분리)

  • Suh, Jung-Min;Kim, Min-Kyun;Lim, Jae-Hee;Lee, Chang-Hun;Lee, Won
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.397-404
    • /
    • 1995
  • Three Arsenazo I-XAD Chelating resins, with different surface areas and pore sizes were synthesized and characterized. The total sorption capacities of these chelating resins for Cu(II) at pH 5.0 by batch method decreased as follows, Arsenazo I-XAD-16(0.59mmol/g)>Arsenazo I-XAD-4(0.56mmol/g)>Arsenazo I-XAD-2(0.38mmol/g). The sorption and desorption properties of Arsenazo I-XAD-16 chelating resins for U(VI), Th(IV), Hf(IV), Zr(IV), Ni(II), Mn(II), Cd(II). and Cu(II) were studied by both batch and elution method. The Arsenazo I-XAD-16 chelating resin was successfully applied to the separation and concentration of trace U(VI) and Th(IV) in sea and waste waters.

  • PDF

Adsorption Behavior of Monosubstituted-Halophenols by Amberlite XAD Resins (Amberlite XAD 수지에 대한 일치환 할로 페놀들의 흡착거동에 관한 연구)

  • Lee, Taek Hyeok;Lee, Dae Un
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.267-279
    • /
    • 1990
  • The adsorption mechanisms of phenols on XAD-2 and XAD-7 resins were studied by using the distribution coefficient(log Kd) measured in the optimum adsorption conditions. It was observed that the Langmuir adsorption isotherm, indicating a molecular size-dependent adsorption, was appropriate for characterizing the adsorption behaviors of phenols on XAD-2 and XAD-7 resins. The adsorption energies of phenols on XAD resins were calculated by Lennard-Jones potential equation. In the calculation of the adsorption energy, the molecular radii and dipole moments of the resins and phenols were calculated by their van der Waals volumes and Debye equation, respectively. The stacking factor (F) were determined from the radio of the equilibrium distance to the stacking distance of molecules. In order to explain the adsorption energy calculated from the stacking factor it was compared with the adsorption enthalpy for each of phenols which was experimentally determined by batch adsorption shake method. It was observed that the adsorption enthalpy of phenolate ions on the XAD resins was likely to be more seriously affected by dispersion interaction than by a dipole or a charge interaction.

  • PDF

A Study on the Adsorption and Recovery of Metal Ions by Amberlite XAD Resins Impregnated with Oxime Compounds (Oxime 화합물을 침윤시킨 Amberlite XAD 수지에 의한 금속이온의 흡착 및 회수에 관한 연구)

  • Dae Woon Lee;Eum Chul Hun;Young Hee Kim;Euy Kyung Yu
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.397-405
    • /
    • 1985
  • The adsorption behaviors of some oxime compounds well known as metal chelating agents on the Amberlite XAD resins were compared by measuring their distribution coefficients (log Kd) in various media, respectively. Among the oxime compounds, salicylaldoxime (SAO) and $\alpha-benzoinoxime(${\alpha}$-BzO)$ which showed large log Kd values were chosen. The characteristics of XAD-4 resins impregnated with SAO and ${\alpha}$-BzO have been studied to apply them for the adsorption and recovery of minute quantities of metal ions in aqueous solution. The optimum conditions for adsorption of SAO and ${\alpha}$-BzO on the resin were 30% methanol media having pH range of 1~8(for SAO) and 1~9 (for ${\alpha}$-BzO), respectively. The distribution coefficients of two oxime compounds were decreased as temperature increased. From the adsorption enthalpy data of SAO and ${\alpha}$-BzO, ranging from 4.96 to 6.66 Kcal/mol, it is suggested that their adsorption mechanism on XAD-4 resin is likely due to molecular adsorption equivalent to dipole-dipole interaction. The impregnated resins were considerably stable in the aqueous solutions of pH 5.0~10.0 and in 0.1~5M hydrochloric acid solutions. The former is the medium for adsorption of metal ions, while the latter is for recovery of the adsorbed metal ions. The adsorption mole ratio of Mn(II), Co(II), Ni(II), Zn(II) ions on SAO-XAD-4 and ${\alpha}$-BzO-XAD-4 resins were about 1 : 2 at the optimum conditions, respectively. The adsorbed metal ions were recovered completely by eluting with 3M HCl-50% methanol solution

  • PDF

Adsorption Treatment of Petroleum Oil on Aqueous Phase (수용액중에 함유된 석유화합물들의 흡착처리에 관한 연구)

  • Lee, T.H.;Son, B.C.;Lee, S.B.;Kim, l.H.
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 1992
  • The adsorption amount of petroleum oil on XAD-4, XAD-7 and replacement adsorbents as rice bran, rice straw and sawdust were studied by using batch method measured in the optimum adsorption condition. The adsorption capacity of rice bran and rice straw of petroleum oil were excellent as well as adsorption ability about 50% of XAD resins and adsorption capacity of their replacement adsorbents were increased with optimum condition that pyrolysis time was 30 min. at $200^{\circ}C$. Adsorption ability of sawdust was very weak on the 30% MeOH aqueous medium but adsorption ability was range of about 50% of XAD resin's adsorption capacity on the 0.5M NaCl aqueous medium. Adsorption ability of rice bran and rice straw showed the same adsorption capacity even if difference external structure. Therefore, showing that rice bran and rice straw were have to good adsorption ability as replacement adsorbent for XAD resins.

  • PDF

The Solid Phase Extraction of Phenol and Chlorophenols by the Chemically Modified Polymeric Adsorbents with Porphyrins

  • Jung, Min-Woo;Kim, Ki-Pal;Cho, Byung-Yun;Paeng, Insook R.;Lee, Dai-Woon;Park, Young-Hun;Paeng, Ki-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.77-81
    • /
    • 2006
  • The commercially available Amberlite XAD-2 and XAD-4 resins were modified with macrocyclic protoporphyrin IX (PPIX) or tetrakis(p-carboxyphenyl) porphyrin (TCPP) to enhance the adsorption capacity for phenol and chlorophenols. The chemically modified polymeric adsorbents (XAD-2+PPIX, XAD-2+TCPP, XAD-4+PPIX, and XAD-4+TCPP) were applied to the solid phase extraction as an adsorbent material for the preconcentration of phenol and chlorophenols in environmental waters. Generally, the synthesized adsorbents showed higher recoveries than underivatized adsorbents, XAD-2 and XAD-4, without matrix interferences. Especially, XAD-4+PPIX showed more than 90% recoveries for all compounds used in this study including hydrophilic phenol. The major factor for the increase of the adsorption capacity was the increase of $\pi$-$\pi$ interaction between adsorbents and samples due to the introduction of the porphyrin molecule. However, the breakthrough volumes and recovery values of the XADs+TCPP columns were slightly decreased for the bulky chlorophenols such as TCP and PCP. Using molecular mechanics methods, the structures of TCPP and PPIX were compared with that of porphine, the parent molecule of porphyrin. Four bulky p-carboxyphenyl groups of TCPP were torsional each other, thus the molecular plane of TCPP were not on the same level. In conclusion, the decrease of breakthrough volumes and recovery values of XADs+TCPP columns for bulky phenols can be explained by the steric hindrance of the $\pi$-$\pi$ interaction between porphyrin plane and the phenols.

Selective Separation of Zr(IV) and Th(IV) by (polystyrene-divinylbenzene)-thiazolylazo Chelating Resins(I) ((Polystyrene-divinylbenzene)-thiazolylazo형 킬레이트 수지에 의한 Zr(IV) 및 Th(IV)의 선택적인 분리(I))

  • Lee, Won;Yook, Jin-Kyung;Lee, Si-Eun;Lee, Chang-Heon
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.323-331
    • /
    • 2000
  • Two chelating resins, XAD-16-TAC and XAD-16-TAO were synthesized by Amberlite XAD-16 macroreticular resin with 2-(2-thiazolylazo)-p-cresol (TAC) and 4-(2-thiazolylazo)-orcinol (TAO) as functional groups. The sorption behaviour of Zr(IV), Th(IV) and U(VI) with two chelating resins were examined with respect to the effect of pH and masking agent by batch methods. It was obtained that the optimum pH was in the range of 5-6, and two chelating resins showed good separation efficiency of Zr(IV) or Th(IV) by using $NH_4F$ as a masking agent. Characteristics of desorption were investigated with 0.1-2 M $HNO_3$ as desorption agent. It was found that 2 M $HNO_3$ showed high desorption efficiency to most of metal ions except Zr(IV). XAD-16-TAC resin is applied to separation and preconcentration of trace Zr(IV) from mixed metal ions. Also, Th(IV) ion can be successfully separated from U(VI) and Zr(IV) ion by using XAD-16- TAO resin.

  • PDF